The purpose of this study was to examine the psychometric properties of the Utrecht-Management of Identity Commitments Scale (U-MICS), a self-report measure aimed at assessing identity processes of commitment, in-depth exploration, and reconsideration of commitment. We tested its factor structure in university students from a large array of cultural contexts, including 10 nations located in Europe (i.e., Italy, the Netherlands, Poland, Portugal, Romania, and Switzerland), Middle East (i.e., Turkey), and Asia (i.e., China, Japan, and Taiwan). Furthermore, we tested national and gender measurement invariance. Participants were 6,118 (63.2% females) university students aged from 18 to 25 years (Mage = 20.91 years). Results indicated that the three-factor structure of the U-MICS fitted well in the total sample, in each national group, and in gender groups. Furthermore, national and gender measurement invariance were established. Thus, the U-MICS can be fruitfully applied to study identity in university students from various Western and non-Western contexts.
The results of this study suggest that EGCG mediates anti-IGF-I and anti-IGF-II signals in preadipocyte mitogenesis via the 67LR but not the AMPK pathway.
Breast cancer is the most common malignancy in women and the second leading cause of cancer death in women. Triple negative breast cancer (TNBC) subtype is a breast cancer subset without ER (estrogen receptor), PR (progesterone receptor) and HER2 (human epidermal growth factor receptor 2) expression, limiting treatment options and presenting a poorer survival rate. Thus, we investigated whether histone deacetylation inhibitor (HDACi) could be used as potential anti-cancer therapy on breast cancer cells. In this study, we found TNBC and HER2-enriched breast cancers are extremely sensitive to Panobinostat, Belinostat of HDACi via experiments of cell viability assay, apoptotic marker identification and flow cytometry measurement. On the other hand, we developed a bioluminescence-based live cell non-invasive apoptosis detection sensor (NIADS) detection system to evaluate the quantitative and kinetic analyses of apoptotic cell death by HDAC treatment on breast cancer cells. In addition, the use of HDACi may also contribute a synergic anti-cancer effect with co-treatment of chemotherapeutic agent such as doxorubicin on TNBC cells (MDA-MB-231), but not in breast normal epithelia cells (MCF-10A), providing therapeutic benefits against breast tumor in the clinic.
Anaplastic thyroid carcinoma (ATC) and squamous thyroid carcinoma (STC) are both rare and advanced thyroid malignancies with a very poor prognosis and an average median survival time of 5 months and less than 20% of affected patients are alive 1 year after diagnosis. The clinical management of both ATC and STC is very similar because they are not particularly responsive to radiotherapy and chemotherapy. This inspired us to explore a novel and effective clinically approved therapy for ATC treatment. Histone deacetylase inhibitor (HDACi) drugs are recently FDA-approved drug for malignancies, especially for blood cell cancers. Therefore, we investigated whether an HDACi drug acts as an effective anticancer drug for advanced thyroid cancers. Cell viability analysis of panobinostat treatment demonstrated a significant IC50 of 0.075 µM on SW579 STC cells. In addition, panobinostat exposure activated histone acetylation and triggered cell death mainly through cell cycle arrest and apoptosis-related protein activation. Using CRISPR/Cas9 to knock out HDAC1 and HDAC2 genes in SW579 cells, we observed that the histone acetylation level and cell cycle arrest were enhanced without any impact on cell growth. Furthermore, HDAC1 and HDAC2 double knockout (KO) cells showed dramatic cell apoptosis activation compared to HDAC1 and HDAC2 individual KO cells. This suggests expressional and biofunctional compensation between HDAC1 and HDAC2 on SW579 cells. This study provides strong evidence that panobinostat can potentially be used in the clinic of advanced thyroid cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.