Epinecidin-1 is an antimicrobial peptide and plays a vital role in protecting fish against pathogenic infection. As a mimic of a grouper epinecidin-1 peptide, it has tertiary structures that closely resemble those of pleurocidin found in the winter flounder (Pleuronectes americanus). The tissue-specific, lipopolysaccharide (LPS)-stimulation-specific, and poly(I):poly(C)-stimulation-specific expressions of the grouper (Epinephelus coioides) epinecidin-1 antimicrobial peptide were determined using a comparative reverse-transcription polymerase chain reaction. Results of the tissue distribution analysis revealed high levels of epinecidin-1 messenger RNA (mRNA) in the head kidneys, intestines, and skin. Expression of epinecidin-1 mRNA was dose-dependently stimulated by both LPS and poly(I):poly(C). Immunohistochemical analysis with the polyclonal antiserum of a grouper epinecidin-1 peptide (rabbit polyclonal antibody) showed that the peptide was localized with the epinecidin-1 antibody in the gills and intestines. Two synthetic peptides of the grouper epinecidin-1 peptide (g-ple 22-51 and g-ple 22-42) and one winter flounder pleurocidin as a control exhibited high antimicrobial activities against gram-negative or gram-positive bacteria. In addition, peptide treatment was effective in promoting a significant increase in fish survival after the injection of Vibrio vulnificus in tilapia (Oreochromis mossambicus) and grouper. These results are relevant to the design of prophylactic and therapeutic strategies to counter bacterial infections, especially for preventing or ameliorating immune defects in fish during bacterial infections.
Asymmetric Janus and ternary silica particles with an average diameter of 450 nm were fabricated by sequentially arranged particle-embedding and surface-modification processes. Thermally induced embedding of particles into polymer-fiber substrates allowed for precise control of the degree of particle submergence and the subsequent chemical modification of the hemispherical exposed particle surfaces. In addition to Janus particles with the desired surface-functionality ratios of 1:2, 1:1, and 2:1, this unique fabrication approach was also used to produce complicated and well-defined heterogeneous materials, including bifunctionalized Janus and ternary particles. The bifunctionalized Janus particles were produced with two hemispherical surfaces alternately labeled with gold and iron oxide nanoparticles, which simultaneously enabled anisotropic surface-plasmon resonance and a magnetic response. Ternary particles were also constructed, yielding submicrometer spheres with functionalized equatorial belts. The surface distributions of functional components in these spherical materials were carefully examined for uniformities in particle embedding. Statistical analyses revealed that the functional components were distributed with a uniformity of over 80% for all of the asymmetric Janus and ternary particles.
Through multiple sequence alignment and phylogenetic analysis, the subgrouping of the crustacean hyperglycemic hormone (CHH) family was updated using the most complete, nonredundant sequence data set. All sequences from insects were clustered into a distinct subbranch with characters closer to CHH subfamily I. Several sequences that are controversial in their nomenclature and classification are discussed. The motif configuration of CHHs differs from that of molt-inhibiting hormone or gonad-inhibiting hormone in both N and C termini. These two motifs approach each other in tertiary structure models, and the motif preference reveals the critical roles of these regions in functional specificity. Two types of exon organizations of the CHH family genes were observed. Four-exon Chh genes were found in a wide range of pan-crustacean (crustacean and hexapod) taxa, except for the penaeid species, from which the 3-exon Chh genes were reported. Meanwhile, the 3-exon structure was found in the Mih gene and Moih genes from one brachyuran species. Combining gene scan skill and exon splicing rules found in this study, we define three more novel sequences from two insect genomes. The pattern of the exon-exon junction within the mature peptide segment is preserved in all CHH family members.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.