IMPORTANCEThe humanized monoclonal antibody atezolizumab targets programmed death-ligand 1 and has demonstrated durable single-agent activity in a subset of metastatic triple-negative breast cancers. To extend the observed activity, combinatorial approaches are being tested with standard cytotoxic chemotherapies known to induce immunogenic tumor cell death.OBJECTIVE To examine the safety, tolerability, and preliminary clinical activity of atezolizumab plus nab-paclitaxel in metastatic triple-negative breast cancers. DESIGN, SETTING, AND PARTICIPANTSThis phase 1b multicohort study enrolled 33 women with stage IV or locally recurrent triple-negative breast cancers and 0 to 2 lines of prior chemotherapy in the metastatic setting from December 8, 2014, to April 30, 2017, at 11 sites in the United States. The median follow-up was 24.4 months (95% CI, 22.1-28.8 months). INTERVENTIONS Patients received concurrent intravenous atezolizumab and intravenous nab-paclitaxel (minimum 4 cycles). MAIN OUTCOMES AND MEASURESThe primary end point was safety and tolerability. Secondary end points included best overall response rate by Response Evaluation Criteria in Solid Tumors, version 1.1; objective response rate; duration of response; disease control rate; progression-free survival; overall survival; and biomarker analyses. RESULTSThe 33 women had a median age of 55 years (range, 32-84 years) and received 1 or more doses of atezolizumab. All patients (100%) experienced at least 1 treatment-related adverse event, 24 patients (73%) experienced grade 3/4 adverse events, and 7 patients (21%) had grade 3/4 adverse events of special interest. No deaths were related to study treatment. The objective response rate was 39.4% (95% CI, 22.9%-57.9%), and the median duration of response was 9.1 months (95% CI, 2.0-20.9 months). The disease control rate was 51.5% (95% CI, 33.5%-69.2%). Median progression-free survival and overall survival were 5.5 months (95% CI, 5.1-7.7 months) and 14.7 months (95% CI, 10.1-not estimable), respectively. Concurrent nab-paclitaxel neither significantly changed biomarkers of the tumor immune microenvironment (programmed death-ligand 1, tumor-infiltrating lymphocytes, CD8) nor impaired atezolizumab systemic immune activation (expansion of proliferating CD8+ T cells, increase of CXCL10 chemokine). CONCLUSIONS AND RELEVANCEIn this phase 1b trial for metastatic triple-negative breast cancers, the combination of atezolizumab plus nab-paclitaxel had a manageable safety profile. Antitumor responses were observed, including in patients previously treated with a taxane. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT01633970
Close proximity between cytotoxic T lymphocytes and tumour cells is required for effective immunotherapy. However, what controls the spatial distribution of T cells in the tumour microenvironment is not well understood. Here we couple digital pathology and transcriptome analysis on a large ovarian tumour cohort and develop a machine learning approach to molecularly classify and characterize tumour-immune phenotypes. Our study identifies two important hallmarks characterizing T cell excluded tumours: 1) loss of antigen presentation on tumour cells and 2) upregulation of TGFβ and activated stroma. Furthermore, we identify TGFβ as an important mediator of T cell exclusion. TGFβ reduces MHC-I expression in ovarian cancer cells in vitro. TGFβ also activates fibroblasts and induces extracellular matrix production as a potential physical barrier to hinder T cell infiltration. Our findings indicate that targeting TGFβ might be a promising strategy to overcome T cell exclusion and improve clinical benefits of cancer immunotherapy.
Purpose: We developed a method to monitor copy number variations (CNV) in plasma cell-free DNA (cfDNA) from patients with metastatic squamous non-small cell lung cancer (NSCLC). We aimed to explore the association between tumor-derived cfDNA and clinical outcomes, and sought CNVs that may suggest potential resistance mechanisms. Experimental Design: Sensitivity and specificity of low-pass whole-genome sequencing (LP-WGS) were first determined using cell line DNA and cfDNA. LP-WGS was performed on baseline and longitudinal cfDNA of 152 patients with squamous NSCLC treated with chemotherapy, or in combination with pictilisib, a pan-PI3K inhibitor. cfDNA tumor fraction and detected CNVs were analyzed in association with clinical outcomes. Results: LP-WGS successfully detected CNVs in cfDNA with tumor fraction !10%, which represented approximately 30% of the first-line NSCLC patients in this study. The most frequent CNVs were gains in chromosome 3q, which harbors the PIK3CA and SOX2 oncogenes. The CNV landscape in cfDNA with a high tumor fraction generally matched that of corresponding tumor tissue. Tumor fraction in cfDNA was dynamic during treatment, and increases in tumor fraction and corresponding CNVs could be detected before radiographic progression in 7 of 12 patients. Recurrent CNVs, such as MYC amplification, were enriched in cfDNA from posttreatment samples compared with the baseline, suggesting a potential resistance mechanism to pictilisib. Conclusions: LP-WGS offers an unbiased and highthroughput way to investigate CNVs and tumor fraction in cfDNA of patients with cancer. It may also be valuable for monitoring treatment response, detecting disease progression early, and identifying emergent clones associated with therapeutic resistance.
Human sex differences in the gene expression of drug metabolizing enzymes and transporters (DMETs) introduce differences in drug absorption, distribution, metabolism and excretion, possibly affecting drug efficacy and adverse reactions. However, existing studies aimed at identifying dimorphic expression differences of DMET genes are limited by sample size and the number of genes profiled. Focusing on a list of 374 DMET genes, we analyzed a previously published gene expression data set consisting of human male (n=234) and female (n=193) liver samples, and identified 77 genes showing differential expression due to sex. To delineate the biological functionalities and regulatory mechanisms for the differentially expressed DMET genes, we conducted a co-expression network analysis. Moreover, clinical implications of sex differences in the expression of human hepatic DMETs are discussed. This study may contribute to the realization of personalized medicine by better understanding the inter-individual differences between males and females in drug/xenobiotic responses and human disease susceptibilities.
Purpose: Emerging data suggest immune checkpoint inhibitors have reduced efficacy in heavily pretreated triple-negative breast cancers (TNBC), but underlying mechanisms are poorly understood. To better understand the phenotypic evolution of TNBCs, we studied the genomic and transcriptomic profiles of paired tumors from patients with TNBC.Experimental Design: We collected paired primary and metastatic TNBC specimens from 43 patients and performed targeted exome sequencing and whole-transcriptome sequencing. From these efforts, we ascertained somatic mutation profiles, tumor mutational burden (TMB), TNBC molecular subtypes, and immune-related gene expression patterns. Stromal tumor-infiltrating lymphocytes (stromal TIL), recurrence-free survival, and overall survival were also analyzed.Results: We observed a typical TNBC mutational landscape with minimal shifts in copy number or TMB over time. However, there were notable TNBC molecular subtype shifts, including increases in the Lehmann/Pietenpol-defined basal-like 1 (BL1, 11.4%-22.6%) and mesenchymal (M, 11.4%-22.6%) phenotypes, and a decrease in the immunomodulatory phenotype (IM, 31.4%-3.2%). The Bursteindefined basal-like immune-activated phenotype was also decreased (BLIA, 42.2%-17.2%). Among downregulated genes from metastases, we saw enrichment of immune-related Kyoto Encyclopedia of Genes and Genomes pathways and gene ontology (GO) terms, and decreased expression of immunomodulatory gene signatures (P < 0.03) and percent stromal TILs (P ¼ 0.03). There was no clear association between stromal TILs and survival.Conclusions: We observed few mutational shifts, but largely consistent transcriptomic shifts in longitudinally paired TNBCs. Transcriptomic and IHC analyses revealed significantly reduced immune-activating gene expression signatures and TILs in recurrent TNBCs. These data may explain the observed lack of efficacy of immunotherapeutic agents in heavily pretreated TNBCs. Further studies are ongoing to better understand these initial observations.See related commentary by Savas and Loi, p. 526
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.