The severity of diabetic retinopathy (DR) is directly correlated to changes in both the oxygen utilization rate of retinal tissue as well as the blood oxygen saturation of both arteries and veins. Therefore, the current stage of DR in a patient can be identified by analyzing the oxygen content in blood vessels through fundus images. This enables medical professionals to make accurate and prompt judgments regarding the patient’s condition. However, in order to use this method to implement supplementary medical treatment, blood vessels under fundus images need to be determined first, and arteries and veins then need to be differentiated from one another. Therefore, the entire study was split into three sections. After first removing the background from the fundus images using image processing, the blood vessels in the images were then separated from the background. Second, the method of hyperspectral imaging (HSI) was utilized in order to construct the spectral data. The HSI algorithm was utilized in order to perform analysis and simulations on the overall reflection spectrum of the retinal image. Thirdly, principal component analysis (PCA) was performed in order to both simplify the data and acquire the major principal components score plot for retinopathy in arteries and veins at all stages. In the final step, arteries and veins in the original fundus images were separated using the principal components score plots for each stage. As retinopathy progresses, the difference in reflectance between the arteries and veins gradually decreases. This results in a more difficult differentiation of PCA results in later stages, along with decreased precision and sensitivity. As a consequence of this, the precision and sensitivity of the HSI method in DR patients who are in the normal stage and those who are in the proliferative DR (PDR) stage are the highest and lowest, respectively. On the other hand, the indicator values are comparable between the background DR (BDR) and pre-proliferative DR (PPDR) stages due to the fact that both stages exhibit comparable clinical-pathological severity characteristics. The results indicate that the sensitivity values of arteries are 82.4%, 77.5%, 78.1%, and 72.9% in the normal, BDR, PPDR, and PDR, while for veins, these values are 88.5%, 85.4%, 81.4%, and 75.1% in the normal, BDR, PPDR, and PDR, respectively.
Hydroxychloroquine, also known as quinine, is primarily utilized to manage various autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, and Sjogren’s syndrome. However, this drug has side effects, including diarrhea, blurred vision, headache, skin itching, poor appetite, and gastrointestinal discomfort. Blurred vision is caused by irreversible retinal damages and can only be mitigated by reducing hydroxychloroquine dosage or discontinuing the drug under a physician’s supervision. In this study, color fundus images were utilized to identify differences in lesions caused by hydroxychloroquine. A total of 176 color fundus images were captured from a cohort of 91 participants, comprising 25 patients diagnosed with hydroxychloroquine retinopathy and 66 individuals without any retinopathy. The mean age of the participants was 75.67 ± 7.76. Following the selection of a specific region of interest within each image, hyperspectral conversion technology was employed to obtain the spectrum of the sampled image. Spectral analysis was then conducted to discern differences between normal and hydroxychloroquine-induced lesions that are imperceptible to the human eye on the color fundus images. We implemented a deep learning model to detect lesions, leveraging four artificial neural networks (ResNet50, Inception_v3, GoogLeNet, and EfficientNet). The overall accuracy of ResNet50 reached 93% for the original images (ORIs) and 96% for the hyperspectral images (HSIs). The overall accuracy of Inception_v3 was 87% for ORIs and 91% for HSI, and that of GoogLeNet was 88% for ORIs and 91% for HSIs. Finally, EfficientNet achieved an overall accuracy of 94% for ORIs and 97% for HSIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.