A transformer coupled plasma (TCP) source has been integrated into a production tool and characterized for subhalf micron etching of thin films. A planar 13.56 MHz plasma is produced over a wide pressure range of 1–500 mTorr. Langmuir probe measurements below 10 mTorr show ion densities ≳1012 cm−3 and low plasma potentials. These properties are favorable for high etch rates and low damage to device structures. Radio-frequency power is also supplied to the wafer electrode for dc bias control. Separation of the plasma generation and dc bias functions allows the control of microloading effects upon the etch profiles of dense and isolated lines. Performance of the tool is described for the etching of polysilicon and tungsten polycide films on substrates up to 200 mm in size. The evaluated characteristics include etch rate, selectivity, and microloading. The TCP is shown to be an advanced source with the capability for meeting 64 megabit device requirements.
An artificial intelligence algorithm to detect mycosis fungoides (MF), psoriasis (PSO), and atopic dermatitis (AD) is demonstrated. Results showed that 10 s was consumed by the single shot multibox detector (SSD) model to analyze 292 test images, among which 273 images were correctly detected. Verification of ground truth samples of this research come from pathological tissue slices and OCT analysis. The SSD diagnosis accuracy rate was 93%. The sensitivity values of the SSD model in diagnosing the skin lesions according to the symptoms of PSO, AD, MF, and normal were 96%, 80%, 94%, and 95%, and the corresponding precision were 96%, 86%, 98%, and 90%. The highest sensitivity rate was found in MF probably because of the spread of cancer cells in the skin and relatively large lesions of MF. Many differences were found in the accuracy between AD and the other diseases. The collected AD images were all in the elbow or arm and other joints, the area with AD was small, and the features were not obvious. Hence, the proposed SSD could be used to identify the four diseases by using skin image detection, but the diagnosis of AD was relatively poor.
Increasing attention has been paid to two-dimensional (2D) materials because of their superior performance and wafer-level synthesis methods. However, the large-area characterization, precision, intelligent automation, and high-efficiency detection of nanostructures for 2D materials have not yet reached an industrial level. Therefore, we use big data analysis and deep learning methods to develop a set of visible-light hyperspectral imaging technologies successfully for the automatic identification of few-layers MoS2. For the classification algorithm, we propose deep neural network, one-dimensional (1D) convolutional neural network, and three-dimensional (3D) convolutional neural network (3D-CNN) models to explore the correlation between the accuracy of model recognition and the optical characteristics of few-layers MoS2. The experimental results show that the 3D-CNN has better generalization capability than other classification models, and this model is applicable to the feature input of the spatial and spectral domains. Such a difference consists in previous versions of the present study without specific substrate, and images of different dynamic ranges on a section of the sample may be administered via the automatic shutter aperture. Therefore, adjusting the imaging quality under the same color contrast conditions is unnecessary, and the process of the conventional image is not used to achieve the maximum field of view recognition range of ~1.92 mm2. The image resolution can reach ~100 nm and the detection time is 3 min per one image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.