Conjugated linoleic acid (CLA; 18:2) is a group of isomers (mainly 9-cis, 11-trans and 10-trans, 12-cis) of linoleic acid. CLA is the product of rumen fermentation and can be found in the milk and muscle of ruminants. Animals fed CLA have a lower body fat content. The objective of this study was to establish the possible mechanisms by which CLA affects adipogenesis. 3T3-L1 is a well-established cell line that is used extensively in studying adipocyte biology. These cells typically grow in a culture medium until they reach confluence, at which time they are induced to differentiate by hormonal treatment (d 0). Treatment of 3T3-L1 cells with 25 to 100 micromol/L CLA inhibited differentiation in a dose-dependent manner, while linoleic acid treatment did not differ from DMSO-treated controls. Continuous treatment from d -2, -1, 0 or 2 to d 8 and treatment from d -2 to d 0 and from d 0 to d 2 inhibited differentiation. Differentiation was monitored morphologically (oil Red-O staining), enzymatically (reduction of activity of glycerol-3-phosphate dehydrogenase), and by northern analysis of peroxisome proliferator-activated receptor gamma2, CCAAT/enhancer binding protein alpha and adipocyte specific protein 2 mRNA. CLA inhibited cell proliferation of nonconfluent cells but did not affect cell division of confluent cells, as indicated by 5-bromo-2'-deoxyuridine incorporation and mitochondria metabolism. Therefore, CLA inhibited differentiation before confluence and during induction. However, cellular proliferation was only inhibited prior to induction. These results imply that fat reduction caused by CLA treatment may be attributed to its inhibition of both proliferation and differentiation of preadipocytes in animals.
Diabetic nephropathy (DN) is one of the serious complications in diabetes. Cyanidin-3-glucoside (C3G) from black rice was reported to have hypoglycemic effects and an anti-osteoporosis effect in diabetic rats. Whether it has preventive effects on DN has not been reported. In this study, we established a rat model of DN, and C3G at two doses (10 and 20 mg kg −1 day −1 ) were administered to see its anti-DN effect. A total of 8 weeks of C3G supplementation decreased blood glucose and serum insulin, improved the renal function, and relieved renal glomerular sclerosis and interstitial fibrosis of DN rats. Also, the kidneys of DN rats had improved the oxidative defense system. Pro-inflammatory mediators were markedly reduced in serum and kidneys of the C3Gtreated groups. Transforming growth factor β1 (TGF-β1), phosphor-Smad2, and phosphor-Smad3 protein expression levels were significantly decreased in the kidney of the C3G-treated group, whereas the Smad7 expression level was upregulated by C3G. Our results indicate that C3G can ameliorate DN via antioxidative stress and anti-inflammation and regulate the TGF-β1/Smad2/3 pathway. Our results suggest that C3G from black rice might be used as a renal-protective nutrient in DN.
The objective of this study was to establish optimal conditions for the primary culture of pig preadipocytes. We cultured pig preadipocytes for 10 d and studied the effects of insulin, hydrocortisone, and triiodothyronine (T3) added to serum-free basal medium on differentiation and gene expression of lipoprotein lipase an early marker, and adipsin, a late marker of preadipocyte differentiation. Insulin alone and hydrocortisone alone stimulated a low level of cell differentiation, as indicated by an increase in glycerol-3-phosphate dehydrogenase activity. When added together, insulin and hydrocortisone had a synergistic effect on cell differentiation. When combined with insulin or hydrocortisone, T3 had no effect on cell differentiation, indicating that T3 is not required in porcine preadipocyte culture. Gene expression studies also showed that removal of insulin or hydrocortisone from complete serum-free medium reduced both early and late marker mRNA. As expected, removal of T3 had no effect on the gene expression of early and late marker mRNA. We conclude that insulin and hydrocortisone, but not T3, are required for the differentiation of pig preadipocytes in primary culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.