Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer; it involves damage to oral epithelial cells due to accumulation of multiple genetic mutations in the cells. OSCC remains major cause of morbidity and mortality in patients with head and neck cancers. Tobacco, smoking, alcohol consumption alone or with chewing tobacco, and betel quid are potential carcinogens contributing to the high occurrence of OSCC. Current treatment modalities for OSCC like chemoradiotherapy, surgery, EGFR inhibitors and COX-2 inhibitors, and photodynamic therapy have led to the major problems related to non-specific cell death. Nanoengineered systems offer solutions to these problems that not only minimize the major drawbacks of nonspecific cell death but also maximize the efficacy of the cancer therapeutic agents. Various efficacious nanotechnology-based carrier systems are being widely investigated for their potential in OSCC treatment: polymeric nanoparticles, polymeric micelles, nanoemulsions and layered nanoemulsions, nanoliposomes, solid lipid nanoparticles and nanolipid carriers, cyclodextrin complexes, hydrogels, metallic nanoparticles, nanocarbon tubes, and receptor mediated drug delivery systems. We highlight the etiology, line of the treatment and chemopreventive measures related to OSCC. We focus on data available in the research carried out worldwide in past 15 years related to the management of OSCC.
Chitosan is the second most abundant natural polysaccharide. It belongs a family of polycationic polymers comprised of repetitive units of glucosamine and N-acetylglucosamine. Its biodegradability, nontoxicity, non-immunogenicity and biocompatibility along with properties like mucoadhesion, fungistatic and bacteriogenic have made chitosan an appreciated polymer with numerous applications in the pharmaceutical, comestics and food industry. However, the limited solubility of chitosan at alkaline and neutral pH limits its widespread commercial use. This can be circumvented by fabrication of chitosan by graft copolymerization with acyl, alkyl, monomeric and polymeric moieties. Areas covered: Modifications like quarterization, thiolation, acylation and grafting result in copolymers with higher mucoadhesion strength, increased hydrophobic interactions (advantageous in hydrophobic drug entrapment), and increased solubility in alkaline pH, the ability for adsorption of metal ions, protein and peptide delivery and nutrient delivery. Insights on methods of polymerization, including atomic transfer radical polymerization and click chemistry are discussed. Applications of such modified chitosan copolymers in medical and surgical, and drug delivery, including nasal, oral and buccal delivery have also been covered. Expert opinion: Despite a number of successful investigations, commercialization of chitosan copolymers still remains a challenge. Further advancements in polymerization techniques may address the unmet needs of the healthcare industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.