Abstract-Probabilistic Roadmap Methods (PRMs) are widely used motion planning methods that sample robot configurations (nodes) and connect them to form a graph (roadmap) containing feasible trajectories. Many PRM variants propose different strategies for each of the steps and choosing among them is problem dependent. Planning in heterogeneous environments and/or on parallel machines necessitates dividing the problem into regions where these choices have to be made for each one. Hand-selecting the best method for each region becomes infeasible. In particular, there are many ways to select connection candidates, and choosing the appropriate strategy is input dependent.In this paper, we present a general connection framework that adaptively selects a neighbor finding strategy from a candidate set of options. Our framework learns which strategy to use by examining their success rates and costs. It frees the user of the burden of selecting the best strategy and allows the selection to change over time.We perform experiments on rigid bodies of varying geometry and articulated linkages up to 37 degrees of freedom. Our results show that strategy performance is indeed problem/region dependent, and our adaptive method harnesses their strengths. Over all problems studied, our method differs the least from manual selection of the best method, and if one were to manually select a single method across all problems, the performance can be quite poor. Our method is able to adapt to changing sampling density and learns different strategies for each region when the problem is partitioned for parallelism.
BackgroundSimulating protein folding motions is an important problem in computational biology. Motion planning algorithms, such as Probabilistic Roadmap Methods, have been successful in modeling the folding landscape. Probabilistic Roadmap Methods and variants contain several phases (i.e., sampling, connection, and path extraction). Most of the time is spent in the connection phase and selecting which variant to employ is a difficult task. Global machine learning has been applied to the connection phase but is inefficient in situations with varying topology, such as those typical of folding landscapes.ResultsWe develop a local learning algorithm that exploits the past performance of methods within the neighborhood of the current connection attempts as a basis for learning. It is sensitive not only to different types of landscapes but also to differing regions in the landscape itself, removing the need to explicitly partition the landscape. We perform experiments on 23 proteins of varying secondary structure makeup with 52–114 residues. We compare the success rate when using our methods and other methods. We demonstrate a clear need for learning (i.e., only learning methods were able to validate against all available experimental data) and show that local learning is superior to global learning producing, in many cases, significantly higher quality results than the other methods.ConclusionsWe present an algorithm that uses local learning to select appropriate connection methods in the context of roadmap construction for protein folding. Our method removes the burden of deciding which method to use, leverages the strengths of the individual input methods, and it is extendable to include other future connection methods.
Africa plays a central importance role in the human origins, and disease susceptibility, agriculture and biodiversity conservation. Nigeria as the most populous and most diverse country in Africa, owing to its 250 ethnic groups and over 500 different native languages is imperative to any global genomic initiative. The newly inaugurated Nigerian Bioinformatics and Genomics Network (NBGN) becomes necessary to facilitate research collaborative activities and foster opportunities for skills’ development amongst Nigerian bioinformatics and genomics investigators. NBGN aims to advance and sustain the fields of genomics and bioinformatics in Nigeria by serving as a vehicle to foster collaboration, provision of new opportunities for interactions between various interdisciplinary subfields of genomics, computational biology and bioinformatics as this will provide opportunities for early career researchers. To provide the foundation for sustainable collaborations, the network organises conferences, workshops, trainings and create opportunities for collaborative research studies and internships, recognise excellence, openly share information and create opportunities for more Nigerians to develop the necessary skills to exceed in genomics and bioinformatics. NBGN currently has attracted more than 650 members around the world. Research collaborations between Nigeria, Africa and the West will grow and all stakeholders, including funding partners, African scientists, researchers across the globe, physicians and patients will be the eventual winners. The exponential membership growth and diversity of research interests of NBGN just within weeks of its establishment and the unanticipated attendance of its activities suggest the significant importance of the network to bioinformatics and genomics research in Nigeria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.