Abstract.Recommender systems face difficulty in cold-start scenarios where a new user has provided only few ratings. Improving cold-start performance is of great interest. At the same time, the growing number of adaptive systems makes it ever more likely that a new user in one system has already been a user in another system in related domains. To what extent can a user model built by one adaptive system help address a cold start problem in another system? We compare methods of cross-system user model transfer across two large real-life systems: we transfer user models built for information seeking of scientific articles in the SciNet exploratory search system, operating over tens of millions of articles, to perform cold-start recommendation of scientific talks in the CoMeT talk management system, operating over hundreds of talks. Our user study focuses on transfer of novel explicit open user models curated by the user during information seeking. Results show strong improvement in cold-start talk recommendation by transferring open user models, and also reveal why explicit open models work better in cross-domain context than traditional hidden implicit models.
Abstract-Social navigation and social tagging technologies enable user communities to assemble the collective wisdom, and use it to help community members in finding the right information. However, it takes a significantly-sized community to make a social system truly useful. The question addressed in this paper is whether collaborative information finding is feasible in the context of smaller communities. To answer this question, we developed two social systems specifically focused on smaller communities -CoMeT and Conference Navigator II -and explored several techniques to increase the volume of user contributions. This paper reviews the explored techniques and presents empirical evidence that demonstrate their effectiveness.
Abstract-Adaptive news systems have become important in recent years. A lot of work has been put into developing these adaptation processes. We describe here an adaptive news system application, which uses an open user model and allow users to manipulate their interest profiles. We also present a study of the system. Our results showed that user profile manipulation should be used with caution.Index Terms-User profile, personalized news access, open user modeling.
Recent efforts in recommender systems research focus increasingly on human factors affecting recommendation acceptance, such as transparency and user control. In this paper, we present IntersectionExplorer, a scalable visualization to interleave the output of several recommender engines with user-contributed relevance information, such as bookmarks and tags. Two user studies at conferences indicate that this approach is well suited for technical audiences in smaller venues, and allowed the identification of applicability limitations for less technical audiences attending larger events.
The study reported in this paper is an attempt to improve contentbased recommendation in CoMeT, a social system for sharing information about research colloquia in Carnegie Mellon and University of Pittsburgh campuses. To improve the quality of recommendation in CoMeT, we explored three additional sources for building user profiles: tags used by users to annotate CoMeT's talks, partial content of CiteULike papers bookmarked by users, and tags used to annotate CiteULike papers. We also compare different tag integration models to study the impact of information fusion on recommendations outcome. The results demonstrate that information encapsulated in CiteULike bookmarks generally helps to improve several aspects of recommendation. The addition of tags by fusing them into keyword profiles helps to improve precision and novelty of recommendation, but may harm systems ability to recommend generally interesting talks. The effects of tags and bookmarks appeared to be stackable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.