Sodium-ion batteries have potential as energy-storage devices owing to an abundant source with low cost. However, most electrode materials still suffer from poor conductivity, sluggish kinetics, and huge volume variation. It is still challenging to explore apt electrode materials for sodium-ion battery applications to avoid the pulverization of electrodes induced by reversible intercalation of large sodium ions. Herein, we report a single-step facile, scalable, low-cost, and high-yield approach to prepare a hybrid material; i.e., MoS2 with graphene (MoS2-G). Due to the space-confined effect, thin-layered MoS2 nanosheets with a loose stacking feature are anchored with the graphene sheets. The semienclosed hybrid architecture of the electrode enhances the integrity and stability during the intercalation of Na+ ions. Particularly, during galvanostatic study the assembled Na-ion cell delivered a specific capacity of 420 mAhg−1 at 50 mAg−1, and 172 mAhg−1 at current density 200 mAg−1 after 200 cycles. The MoS2-G hybrid excels in performance due to residual oxygen groups in graphene, which improves the electronic conductivity and decreases the Na+ diffusion barrier during electrochemical reaction, in comparison with a pristine one.
Tin oxides are the most promising anode materials for sodium-ion batteries (SIBs) due to their abundances and their multi-electron reactions which ultimately provide high theoretical capacity. However, the huge volume...
Na-ion batteries (SIBs) have attracted attention due to its economics and eco-friendly nature compared to lithium-ion batteries. Tin-based compounds are focused for SIBs owing to high theoretical capacities, though it...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.