A lack of N95 Filtering Facepiece Respirators (FFRs) during the COVID-19 crisis has placed healthcare workers at risk. It is important for any N95 reuse strategy to determine the effects that proposed protocols would have on the physical functioning of the mask, as well as the practical aspects of implementation. Here we propose and implement a method of heating N95 respirators with moisture (85˚C, 60-85% humidity). We test both mask filtration efficiency and fit to validate this process. Our tests focus on the 3M 1860, 3M 1870, and 3M 8210 Plus N95 models. After five cycles of the heating procedure, all three respirators pass both quantitative fit testing (score of >100) and show no degradation of mask filtration efficiency. We also test the Chen Heng V9501 KN95 and HKYQ N95 finding no degradation of mask filtration efficiency, however even for unheated masks these scored <50 for every fit test. The heating method presented here is scalable from individual masks to over a thousand a day with a single industrial convection oven, making this method practical for local application inside health-care facilities.
A lack of N95 respirators during the COVID-19 crisis has placed healthcare workers at risk. It is important for any N95 reuse strategy to determine the effects that proposed protocols would have on the physical functioning of the mask, as well as the practical aspects of implementation. Here we propose and implement a method of heating N95 respirators with moisture (85 o C, 60-85% humidity). We test both mask filtration efficiency and fit to validate this process. Our tests focus on the 3M 1860 and 3M 8210 Plus N95 models. After five cycles of the heating procedure, both respirators pass quantitative fit testing (score of >100) and show no degradation of mask filtration efficiency. We also test the Chen Heng V9501 KN95 and HKYQ N95 finding no degradation of mask filtration efficiency, however even for unheated masks these scored <50 for every fit test. The heating method presented here is scalable from individual masks to over a thousand a day with a single industrial convection oven, making this method practical for local application inside health-care facilities.
Current shortages of Filtering Facepiece Respirators (FFRs) have created a demand for effective methods for N95 decontamination and reuse. Before implementing any reuse strategy it is important to determine what effects the proposed method has on the physical functioning of the FFR. Here we investigate the effects of two potential methods for decontamination; dry heat at 95 °C, and autoclave treatments. We test both fit and filtration efficiency for each method. For the dry heat treatment we consider the 3M 1860, 3M 1870, and 3M8210+ models. After five cycles of the dry heating method, all three FFR models pass both fit and filtration tests, showing no degradation. For the autoclave tests we consider the 3M 1870, and the 3M 8210+. We find significant degradation of the FFRs following the 121 °C autoclave cycles. The molded mask tested (3M 8210+) failed fit testing after just 1 cycle in the autoclave. The pleated (3M 1870) mask passed fit testing for 5 cycles, but failed filtration testing. The 95 °C dry heat cycle is scalable to over a thousand masks per day in a hospital setting, and is above the temperature which has been shown to achieve the requisite 3 log kill of SARS-CoV-2[1], making it a promising method for N95 decontamination and reuse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.