A stand-alone hybrid power system is proposed in this paper. The system consists of solar power, wind power, diesel engine, and an intelligent power controller. MATLAB/Simulink was used to build the dynamic model and simulate the system. To achieve a fast and stable response for the real power control, the intelligent controller consists of a radial basis function network (RBFN) and an improved Elman neural network (ENN) for maximum power point tracking (MPPT). The pitch angle of wind turbine is controlled by the ENN, and the solar system uses RBFN, where the output signal is used to control the dc/dc boost converters to achieve the MPPT.Index Terms-Diesel engine, improved Elman neural network (ENN), maximum power point tracking (MPPT), photovoltaic (PV) power system, radial basis function network (RBFN), wind power system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.