Biological production of silver nanoparticles by lixivium of sundried Cinnamomum camphora leaf in continuous-flow tubular microreactors was investigated. Properties of silver nanoparticles were examined by transmission electron microscopy (TEM), UV-vis spectroscopy, X-ray diffraction (XRD), and energy dispersive X-ray (EDX). The concentration of residual silver ions after reaction was measured by atomic absorption spectophotometry (AAS) spectroscopy. Fourier transform infrared (FTIR) spectra of C. camphora leaf lixivium were analyzed and temperature profiles along the tubes were calculated to explore formation mechanism of silver nanoparticles. Comparison of FTIR spectra of C. camphora leaf lixivium before and after reaction demonstrated the polyols in the lixivium may be mainly responsible for reduction of silver ions. According to the temperature profiles, at the inlet of the microreactors at 90 °C, the soar of the fluid temperature induced the burst of silver nuclei by homogeneous nucleation. Subsequently, the nuclei grew gradually along the reactors into silver nanoparticles from 5 to 40 nm. Polydisperse particles were formed by combination of heterogeneous nucleation and Ostwald ripening along the tubes at 60 °C.
A stand-alone hybrid power system is proposed in this paper. The system consists of solar power, wind power, diesel engine, and an intelligent power controller. MATLAB/Simulink was used to build the dynamic model and simulate the system. To achieve a fast and stable response for the real power control, the intelligent controller consists of a radial basis function network (RBFN) and an improved Elman neural network (ENN) for maximum power point tracking (MPPT). The pitch angle of wind turbine is controlled by the ENN, and the solar system uses RBFN, where the output signal is used to control the dc/dc boost converters to achieve the MPPT.Index Terms-Diesel engine, improved Elman neural network (ENN), maximum power point tracking (MPPT), photovoltaic (PV) power system, radial basis function network (RBFN), wind power system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.