Currently, there is controversy around whether rats can use interaural time differences (ITDs) to localize sound. Here, naturalistic pulse train stimuli were used to evaluate the rat's sensitivity to onset and ongoing ITDs using a two-alternative forced choice sound lateralization task. Pulse rates between 50 Hz and 4.8 kHz with rectangular or Hanning windows were delivered with ITDs between ±175 μs over a near-field acoustic setup. Similar to other mammals, rats performed with 75% accuracy at ∼50 μs ITD, demonstrating that rats are highly sensitive to envelope ITDs.
Background To localize sound sources accurately in a reverberant environment, human binaural hearing strongly favors analyzing the initial wave front of sounds. Behavioral studies of this “precedence effect” have so far largely been confined to human subjects, limiting the scope of complementary physiological approaches. Similarly, physiological studies have mostly looked at neural responses in the inferior colliculus, the main relay point between the inner ear and the auditory cortex, or used modeling of cochlear auditory transduction in an attempt to identify likely underlying mechanisms. Studies capable of providing a direct comparison of neural coding and behavioral measures of sound localization under the precedence effect are lacking. Results We adapted a “temporal weighting function” paradigm previously developed to quantify the precedence effect in human for use in laboratory rats. The animals learned to lateralize click trains in which each click in the train had a different interaural time difference. Computing the “perceptual weight” of each click in the train revealed a strong onset bias, very similar to that reported for humans. Follow-on electrocorticographic recording experiments revealed that onset weighting of interaural time differences is a robust feature of the cortical population response, but interestingly, it often fails to manifest at individual cortical recording sites. Conclusion While previous studies suggested that the precedence effect may be caused by early processing mechanisms in the cochlea or inhibitory circuitry in the brainstem and midbrain, our results indicate that the precedence effect is not fully developed at the level of individual recording sites in the auditory cortex, but robust and consistent precedence effects are observable only in the auditory cortex at the level of cortical population responses. This indicates that the precedence effect emerges at later cortical processing stages and is a significantly “higher order” feature than has hitherto been assumed.
Background: To localize sound sources accurately in a reverberant environment, human binaural hearing strongly favors analyzing the initial wave front of sounds. Behavioral studies of this 'precedence effect' have so far largely been confined to human subjects, limiting the scope of complementary physiological approaches. Similarly, physiological studies have mostly looked at neural responses in the inferior colliculus, or used modeling of cochlear mechanics in an attempt to identify likely underlying mechanisms. Studies capable of providing a direct comparison of neural coding and behavioral measures of sound localization under the precedence effect are lacking. Results: We adapted a 'temporal weighting function' paradigm for use in laboratory rats. The animals learned to lateralize click trains in which each click in the train had a different interaural time difference. Computing the 'perceptual weight' of each click in the train revealed a strong onset bias, very similar to that reported for humans. Follow-on electrocorticographic recording experiments revealed that onset weighting of ITDs is a robust feature of the cortical population response, but interestingly it often fails to manifest at individual cortical recording sites. Conclusion: While previous studies suggested that the precedence effect may be caused by cochlear mechanics or inhibitory circuitry in the brainstem and midbrain, our results indicate that the precedence effect is not fully developed at the level of individual recording sites in auditory cortex, but robust and consistent precedence effects are observable at the level of cortical population responses. This indicates that the precedence effect is significantly 'higher order' than has hitherto been assumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.