Sclerotinia stem rot (SSR) is the most important disease of oilseed Brassica crops in Norway. Fungicide applications should be aligned with the actual need for control, but the SSR prediction models used lack accuracy. We have studied the importance of precipitation, and the role of petal and leaf infection for SSR incidence by using data from Norwegian field and trap plant trials over several years. In the trials, SSR incidence ranged from 0 to 65%. Given an infection threshold of 25% SSR, regression and Receiver Operating Characteristics (ROC) analysis were used to evaluate different precipitation thresholds. The sum of precipitation two weeks before and during flowering appeared to be a poor predictor for SSR infection in our field and trap plant trials (P = 0.24, P = 0.11, respectively). Leaves from three levels (leaf one, three, five), and petals were collected at three to four different times during flowering from nine field sites over two years and tested for SSR infection with real-time PCR. Percentage total leaf and petal infection explained 57 and 45% of variation in SSR incidence, respectively. Examining the different leaves and petals separately, infection of leaf three sampled at full flowering showed the highest explanation of variation in later SSR incidence (R 2 = 65%, P < 0.001). ROC analysis showed that given an infection threshold of 45%, both petal and leaf infection recommended spraying when spraying was actually needed. Combining information on petal and leaf infection during flowering with relevant microclimate factors in the canopy, instead of the sum of precipitation might improve prediction accuracy for SSR.
In a number of pathosystems involving the powdery mildews (Erysiphales), plant stress is associated with decreased disease susceptibility and is detrimental to pathogen growth and reproduction. However, in strawberry, anecdotal observations associate severe powdery mildew (Podosphaera aphanis) with water stress. In a 2017 survey of 42 strawberry growers in Norway and California, 40 growers agreed with a statement that water-stressed strawberry plants were more susceptible to powdery mildew compared with nonstressed plants. In repeated in vitro and in vivo experiments, we found that water stress was consistently and significantly unfavorable to conidial germination, infection, and increases in disease severity. Deleterious effects on the pathogen were observed from both preinoculation and postinoculation water stress in the host. Soil moisture content in the range from 0 to 50% was correlated (R2 = 0.897) with germinability of conidia harvested from extant colonies that developed on plants growing at different levels of water stress. These studies confirm that P. aphanis fits the norm for biotrophic powdery mildews and hosts under stress. Mild water stress, compared with a state of optimal hydration, is likely to decrease rather than increase susceptibility of strawberry to P. aphanis. We believe it is possible that foliar symptoms of leaf curling due to diffuse and inconspicuous infection of the lower leaf surfaces by P. aphanis could easily be mistakenly attributed to water stress, which we observed as having a nearly identical leaf curling symptom in strawberry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.