These authors contributed equally. SUMMARYGlobal demand for vegetable oils is increasing at a dramatic rate, while our understanding of the regulation of oil biosynthesis in plants remains limited. To gain insights into the mechanisms that govern oil synthesis and fatty acid (FA) composition in the oil palm fruit, we used a multilevel approach combining gene coexpression analysis, quantification of allele-specific expression and joint multivariate analysis of transcriptomic and lipid data, in an interspecific backcross population between the African oil palm, Elaeis guineensis, and the American oil palm, Elaeis oleifera, which display contrasting oil contents and FA compositions. The gene coexpression network produced revealed tight transcriptional coordination of fatty acid synthesis (FAS) in the plastid with sugar sensing, plastidial glycolysis, transient starch storage and carbon recapture pathways. It also revealed a concerted regulation, along with FAS, of both the transfer of nascent FA to the endoplasmic reticulum, where triacylglycerol assembly occurs, and of the production of glycerol-3-phosphate, which provides the backbone of triacylglycerols. Plastid biogenesis and auxin transport were the two other biological processes most tightly connected to FAS in the network. In addition to WRINKLED1, a transcription factor (TF) known to activate FAS genes, two novel TFs, termed NF-YB-1 and ZFP-1, were found at the core of the FAS module. The saturated FA content of palm oil appeared to vary above all in relation to the level of transcripts of the gene coding for b-ketoacyl-acyl carrier protein synthase II. Our findings should facilitate the development of breeding and engineering strategies in this and other oil crops.
Background and aims Palms are vital to worldwide human nutrition, in particular as major sources of vegetable oils. However, our knowledge of seed and fruit lipid diversity in the family Arecaceae is limited. We therefore aimed to explore relationships between seed and fruit lipid content, fatty acid composition in the respective tissues, phylogenetic factors and biogeographical parameters. Methods Oil content and fatty acid composition were characterized in seeds and fruits of 174 and 144 palm species respectively. Distribution, linear regression and multivariate analyses allowed an evaluation of the chemotaxonomic value of these traits and their potential relationship with ecological factors. Key Results A considerable intra-family diversity for lipid traits was revealed. Species with the most lipid-rich seeds belonged to the tribe Cocoseae, while species accumulating oil in the mesocarp occurred in all subfamilies and two-thirds of the tribes studied. Seed and fruit lipid contents were not correlated. Fatty acid composition of mesocarp oil was highly variable within tribes. By contrast, within-tribe diversity for seed lipid traits was low, whereas between-tribe variability was high. Consequently, multivariate analyses of seed lipid traits produced groupings of species belonging to the same tribe. Medium-chain fatty acids predominated in seeds of most palm species, but they were also accumulated in the mesocarp in some cases. Seed unsaturated fatty acid content correlated with temperature at the coldest latitude of natural occurrence. Conclusion Several previously uncharacterized palms were identified as potential new sources of vegetable oils for comestible or non-food use. Seed lipid traits reflect genetic drift that occurred during the radiation of the family and therefore are highly relevant to palm chemotaxonomy. Our data also suggest that seed unsaturated fatty acids may provide an adaptive advantage in the coldest environments colonized by palms by maintaining storage lipids in liquid form for efficient mobilization during germination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.