The purpose of this study was to compare the heel pad mechanical properties of runners, who repetitively load the heel pad during training, with cyclists who do not load their heel pads during training. Ten competitive long distance runners and 10 competitive cyclists volunteered for this study. The thickness of the unloaded heel pad was measured using realtime B-mode ultrasonography. A heel pad indentation device was used to measure the mechanical properties of the heel pads. To evaluate the differences between the two groups, in heel pad properties, a repeat measures analysis of variance was used (p< .05). Heel pad thickness was not different between groups when normalized with respect to subject height. There was no significant difference between the groups in percentage energy loss during loading and unloading (runners: 61.4% ± 8.6; cyclists: 62.5% ± 4.6). Heel pad stiffness for the runners was statistically significantly less than that of the cyclists (p= .0018; runners: 17.1 N·mm−1± 3.0; cyclists: 20.4 N·mm−1± 4.0). These results indicate that the nature of the activity undertaken by individuals may influence their heel pad properties. This finding may be important when considering differences in heel pad properties between different populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.