Recent behavioral data have shown that lifelong bilingualism can maintain youthful cognitive control abilities in aging. Here, we provide the first direct evidence of a neural basis for the bilingual cognitive control boost in aging. Two experiments were conducted, using a perceptual task switching paradigm, and including a total of 110 participants. In Experiment 1, older adult bilinguals showed better perceptual switching performance than their monolingual peers. In Experiment 2, younger and older adult monolinguals and bilinguals completed the same perceptual task switching experiment while fMRI was performed. Typical age-related performance reductions and fMRI activation increases were observed. However, like younger adults, bilingual older adults outperformed their monolingual peers while displaying decreased activation in left lateral frontal cortex and cingulate cortex. Critically, this attenuation of age-related over-recruitment associated with bilingualism was directly correlated with better task switching performance. In addition, the lower BOLD response in frontal regions accounted for 82% of the variance in the bilingual task switching reaction time advantage. These results suggest that lifelong bilingualism offsets age-related declines in the neural efficiency for cognitive control processes.
One of our highest evolved functions as human beings is our capacity to switch between multiple tasks effectively. A body of research has identified a distributed frontoparietal network of brain regions which contribute to task switching. However, relatively less is known about whether some brain regions may contribute to switching in a domain-general manner while others may be more preferential for different kinds of switching. To explore this issue, we conducted three meta-analyses focusing on different types of task switching frequently used in the literature (perceptual, response, and context switching), and created a conjunction map of these distinct switch types. A total of 36 switching studies with 562 activation coordinates were analyzed using the activation likelihood estimation method. Common areas associated with switching across switch type included the inferior frontal junction and posterior parietal cortex. In contrast, domain-preferential activation was observed for perceptual switching in the dorsal portion of the premotor cortex and for context switching in frontopolar cortex. Our results suggest that some regions within the frontoparietal network contribute to domain-general switching processes while others contribute to more domain-preferential processes, according to the type of task switch performed.
High cardiorespiratory fitness (CRF) is an important protective factor reducing the risk of cardiac-related disability and mortality. Recent research suggests that high CRF also has protective effects on the brain’s macrostructure and functional response. However, little is known about the potential relationship between CRF and the brain’s white matter (WM) microstructure. This study explored the relationship between a comprehensive measure of CRF (VO2 peak, total time on treadmill, and 1-minute heart rate recovery) and multiple diffusion tensor imaging measures of WM integrity. Participants were 26 healthy community dwelling seniors between the ages of 60 and 69 (mean = 64.79 years, SD = 2.8). Results indicated a positive correlation between comprehensive CRF and fractional anisotropy (FA) in a large portion of the corpus callosum. Both VO2 peak and total time on treadmill contributed significantly to explaining the variance in mean FA in this region. The CRF-FA relationship observed in the corpus callosum was primarily characterized by a negative correlation between CRF and radial diffusivity in the absence of CRF correlations with either axial diffusivity or mean diffusivity. Tractography results demonstrated that portions of the corpus callosum associated with CRF primarily involved those interconnecting frontal regions associated with high-level motor planning. These results suggest that high CRF may attenuate age-related myelin declines in portions of the corpus callosum that interconnect homologous premotor cortex regions involved in motor planning.
The human ability to flexibly alternate between tasks represents a central component of cognitive control. Neuroimaging studies have linked task switching with a diverse set of prefrontal cortex (PFC) regions but the contributions of these regions to various forms of cognitive flexibility remains largely unknown. Here, subjects underwent functional brain imaging while they completed a paradigm which selectively induced stimulus, response, or cognitive set switches in the context of a single task decision performed on a common set of stimuli. Behavioral results indicated comparable reaction time costs associated with each switch type. Domain-general task switching activation was observed in the inferior frontal junction and posterior parietal cortex, suggesting core roles for these regions in switching such as updating and representing task sets. In contrast, multiple domain-preferential PFC activations were observed across lateral and medial PFC, with progressively more rostral regions recruited as switches became increasingly abstract. Specifically, highly abstract cognitive set switches recruited anterior-PFC regions, moderately abstract response switches recruited mid-PFC regions, and highly constrained stimulus switches recruited posterior-PFC regions. These results demonstrate a functional organization across lateral and medial PFC according to the level of abstraction associated with acts of cognitive flexibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.