One of our highest evolved functions as human beings is our capacity to switch between multiple tasks effectively. A body of research has identified a distributed frontoparietal network of brain regions which contribute to task switching. However, relatively less is known about whether some brain regions may contribute to switching in a domain-general manner while others may be more preferential for different kinds of switching. To explore this issue, we conducted three meta-analyses focusing on different types of task switching frequently used in the literature (perceptual, response, and context switching), and created a conjunction map of these distinct switch types. A total of 36 switching studies with 562 activation coordinates were analyzed using the activation likelihood estimation method. Common areas associated with switching across switch type included the inferior frontal junction and posterior parietal cortex. In contrast, domain-preferential activation was observed for perceptual switching in the dorsal portion of the premotor cortex and for context switching in frontopolar cortex. Our results suggest that some regions within the frontoparietal network contribute to domain-general switching processes while others contribute to more domain-preferential processes, according to the type of task switch performed.
The human ability to flexibly alternate between tasks represents a central component of cognitive control. Neuroimaging studies have linked task switching with a diverse set of prefrontal cortex (PFC) regions but the contributions of these regions to various forms of cognitive flexibility remains largely unknown. Here, subjects underwent functional brain imaging while they completed a paradigm which selectively induced stimulus, response, or cognitive set switches in the context of a single task decision performed on a common set of stimuli. Behavioral results indicated comparable reaction time costs associated with each switch type. Domain-general task switching activation was observed in the inferior frontal junction and posterior parietal cortex, suggesting core roles for these regions in switching such as updating and representing task sets. In contrast, multiple domain-preferential PFC activations were observed across lateral and medial PFC, with progressively more rostral regions recruited as switches became increasingly abstract. Specifically, highly abstract cognitive set switches recruited anterior-PFC regions, moderately abstract response switches recruited mid-PFC regions, and highly constrained stimulus switches recruited posterior-PFC regions. These results demonstrate a functional organization across lateral and medial PFC according to the level of abstraction associated with acts of cognitive flexibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.