Bone-marrow-derived human MSCs (mesenchymal stem cells) support repair when administered to animals with TBI (traumatic brain injury) in large part through secreted trophic factors. We directly tested the ability of the culture medium (or secretome) collected from human MSCs under normoxic or hypoxic conditions to protect neurons in a rat model of TBI. Concentrated conditioned medium from cultured human MSCs or control medium was infused through the tail vein of rats subjected to TBI. We have demonstrated that MSCs cultured in hypoxia were superior to those cultured in normoxia in inducing expression of both HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor) in the cultured medium. We showed further that rats treated with the secretome from both normoxic- and hypoxic-preconditioned MSCs performed significantly better than the controls in both motor and cognitive functional test. Subsequent post-mortem evaluation of brain damage at the 4-day time point confirmed that both normoxic- and hypoxic-preconditioned MSC secretome-treated rats had significantly greater numbers of newly forming neurons, but significantly less than the controls in brain damaged volume and apoptosis. The TBI rats treated with hypoxic-preconditioned MSC secretome performed significantly better in both motor and cognitive function tests and neurogenesis, and had significantly less brain damage than the TBI rats treated with the normoxic-preconditioned MSC secretome. Collectively, these findings suggest that MSCs secrete bioactive factors, including HGF and VEGF, that stimulate neurogenesis and improve outcomes of TBI in a rat model. Hypoxic preconditioning enhances the secretion of these bioactive factors from the MSCs and the therapeutic potential of the cultured MSC secretome in experimental TBI.
BackgroundTumor necrosis factor-alpha (TNF-α) is elevated early in injured brain after traumatic brain injury (TBI), in humans and in animals. Etanercept (a TNF-α antagonist with anti-inflammatory effects) attenuates TBI in rats by reducing both microglial and astrocytic activation and increased serum levels of TNF-α. However, it is not known whether etanercept improves outcomes of TBI by attenuating microglia-associated, astrocytes-associated, and/or neurons-associated TNF-α expression in ischemic brain. A well clinically relevant rat model, where a lateral fluid percussion is combined with systemic administration of etanercept immediately after TBI, was used. The neurological severity score and motor function was measured on all rats preinjury and on day 3 after etanercept administration. At the same time, the neuronal and glial production of TNF-α was measured by Immunofluorescence staining. In addition, TNFα contents of ischemic cerebral homogenates was measured using commercial enzyme-linked immunosorbent assay kits.ResultsIn addition to inducing brain ischemia as well as neurological and motor deficits, TBI caused significantly higher numbers of microglia-TNF-α double positive cells, but not neurons-TNF-α or astrocytes-TNF-α double positive cells in the injured brain areas than did the sham operated controls, when evaluated 3 days after TBI. The TBI-induced cerebral ischemia, neurological motor deficits, and increased numbers of microglia-TNF-α double positive cells and increased TNF-α levels in the injured brain were all significantly attenuated by etanercept therapy.ConclusionThis finding indicates that early microglia overproduction of TNF-α in the injured brain region after TBI contributes to cerebral ischemia and neurological motor deficits, which can be attenuated by etanercept therapy. Studies in this model could provide insight into the mechanisms underlying neurological motor disturbance in brain-injured patients.
It remains unclear whether etanercept penetrates directly into the contused brain and improves the outcomes of TBI by attenuating brain contents of TNF-α and/or stimulating newly formed neurogenesis. Rats that sustained TBI are immediately treated with etanercept. Acute neurological and motor injury is assessed in all rats the day prior to and 7 days after surgery. The numbers of the colocalizations of 5-bromodeoxyuridine and doublecortin specific markers in the contused brain injury that occurred during TBI were counted by immunofluorescence staining. Enzyme immunoassay for quantitative determination of TNF-α or etanercept in brain tissues is also performed. Seven days after systemic administration of etanercept, levels of etanercept can be detected in the contused brain tissues. In addition, neurological and motor deficits, cerebral contusion, and increased brain TNF-α contents caused by TBI can be attenuated by etanercept therapy. Furthermore, the increased numbers of the colocalizations of 5-bromodeoxyuridine and doublecortin specific markers in the contused brain tissues caused by TBI can be potentiated by etanercept therapy. These findings indicate that systemically administered etanercept may penetrate directly into the contused brain tissues and may improve outcomes of TBI by reducing brain contents of TNF-α and by stimulating newly formed neurogenesis.
Abstract:Oxidative stress-mediated cellular injury has been considered as a major cause of neurodegenerative diseases including Alzheimer's and Parkinson's diseases. The scavenging of reactive oxygen species (ROS) mediated by antioxidants may be a potential strategy for retarding the diseases' progression. Costunolide (CS) is a well-known sesquiterpene lactone, used as a popular herbal remedy, which possesses anti-inflammatory and antioxidant activity. This study aimed to investigate the protective role of CS against the cytotoxicity induced by hydrogen peroxide (H 2 O 2 ) and to elucidate potential protective mechanisms in PC12 cells. The results showed that the treatment of PC12 cells with CS prior to H 2 O 2 exposure effectively increased the cell viability. Furthermore, it decreased the intracellular ROS, stabilized the mitochondria membrane potential (MMP), and reduced apoptosis-related protein such as caspase 3. In addition, CS treatment attenuated the cell injury by H 2 O 2 through the inhibition of phosphorylation of p38 and the extracellular signal-regulated kinase (ERK). These results demonstrated that CS is promising as a potential therapeutic candidate for neurodegenerative diseases resulting from oxidative damage and further research on this topic should be encouraged.
SUMMARYThe effects of 3-deazaadenosine (DZA), 3-deaza(Ϯ)-aristeromycin (DZAri) and 3-deazaneplanocin (DZNep) on tumour necrosis factor-␣ (TNF-␣) production were examined in the mouse macrophage cell line, RAW264.7, stimulated with lipopolysaccharide (LPS). The 3-deazaadenosine analogues inhibited the TNF-␣ production and the inhibition was dependent upon the concentration of the analogue. DZA reduced the level of TNF-␣ mRNA suggesting that DZA acts at a transcriptional step. In contrast, DZAri and DZNep had little effect on mRNA levels for TNF-␣, implying that these compounds inhibit a post-transcriptional or translational biosynthetic step of TNF-␣ synthesis. The observation that homocysteine (Hcy) potentiated the DZA inhibition of TNF-␣ production and of TNF-␣ mRNA levels suggests that the inhibition of TNF-␣ production may be caused by elevated levels of 3-deazaadenosylhomocysteine (DZAHcy). The results show that the 3-deazaadenosine analogues are potent inhibitors of TNF-␣ production in the RAW264.7 cell line stimulated with LPS and suggest that these analogues may be effective agents for the treatment of diseases in which TNF-␣ plays an important pathogenic role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.