For their various bioactivities, biomaterials derived from marine algae are important ingredients in many products, such as cosmetics and drugs for treating cancer and other diseases. This mini-review comprehensively compares the bioactivities and biological functions of biomaterials from red, green, brown, and blue-green algae. The anti-oxidative effects and bioactivities of several different crude extracts of algae have been evaluated both in vitro and in vivo. Natural products derived from marine algae protect cells by modulating the effects of oxidative stress. Because oxidative stress plays important roles in inflammatory reactions and in carcinogenesis, marine algal natural products have potential for use in anti-cancer and anti-inflammatory drugs.
The polyphenolic compound Resveratrol is a naturally occurring phytochemical and can be found in many plant species, including grapes, peanuts and various herbs. Several studies have established that Resveratrol can exert anti-oxidant and anti-inflammatory activities. It also has activity in the regulation of multiple cellular events associated with carcinogenesis. This review describes the general properties of Resveratrol including its relationship to estrogen, its effect on lipid metabolism, its cardiovascular effects, and its role on gene expression. Resveratrol has also been examined in several model systems for its potential effect against cancer. Its anti-cancer effects include its role as a chemopreventive agent, its ability to inhibit cell proliferation, its direct effect in cytotoxicity by induction of apoptosis and on its potential therapeutic effect in pre-clinical studies. In addition, Resveratrol has been shown to exert sensitization effects on cancer cells that will result in a synergistic cytotoxic activity when Resveratrol is used in combination with cytotoxic drugs in drug-resistant tumor cells. Clearly, the studies with Resveratrol provide support for the use of Resveratrol in human cancer chemoprevention and combination with chemotherapeutic drugs or cytotoxic factors in the treatment of drug refractory tumor cells.
BackgroundTumor hypoxia is an important factor related to tumor resistance to radiotherapy and chemotherapy. This study investigated molecules synthesized in colorectal cancer cells during hypoxia to explore the possibility of developing molecular probes capable of detecting cell death and/or the efficiency of radiotherapy and chemotherapy.MethodsAt first, we incubated two human colorectal adenocarcinoma cell lines SW480 (UICC stage II) and SW620 (UICC stage III) cells in hypoxic (≤2% O2, 93% N2, and 5% CO2) and normoxic conditions (20% O2, 75% N2, and 5% CO2) for 24 h and 48 h. The relative expression ratio of GLUT1 mRNA in hypoxic conditions was analyzed by RT-PCR. Ten cancerous tissues collected from human colorectal cancer patients were examined. HIF-1α and HIF-2α levels were measured to indicate the degree of hypoxia, and gene expression under hypoxic conditions was determined. As a comparison, HIF-1α, HIF-2α, and GLUT1 levels were measured in the peripheral blood of 100 CRC patients.ResultsHypoxia-induced lactate was found to be elevated 3.24- to 3.36-fold in SW480 cells, and 3.06- to 3.17-fold in SW620 cells. The increased relative expression ratio of GLUT1 mRNA, under hypoxic conditions was higher in SW620 cells (1.39- to 1.72-fold elevation) than in SW480 cells (1.24- to 1.66-fold elevation). HIF-1α and HIF-2α levels were elevated and GLUT1 genes were significantly overexpressed in CRC tissue specimens. The elevated ratio of GLUT1 was higher in stage III and IV CRC tissue specimens than in the stage I and II (2.97–4.73 versus 1.44–2.11). GLUT1 mRNA was also increased in the peripheral blood of stage II and III CRC patients as compared to stage I patients, suggesting that GLUT1 may serve as a hypoxic indicator in CRC patients.ConclusionIn conclusion, this study demonstrated that GLUT1 has the potential to be employed as a molecular marker to indicate the degree of hypoxia experienced by tumors circulating in the blood of cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.