Tumor metastasis is the major cause of death among cancer patients, with more than 90% of cancer-related death attributable to the spreading of metastatic cells to secondary organs. Store-operated Ca2+ entry (SOCE) is the predominant Ca2+ entry mechanism in most cancer cells, and STIM1 is the endoplasmic reticulum (ER) Ca2+ sensor for store-operated channels (SOC). Here we reported that the STIM1 was overexpressed in colorectal cancer (CRC) patients. STIM1 overexpression in CRC was significantly associated with tumor size, depth of invasion, lymphnode metastasis status and serum levels of carcinoembryonic antigen. Furthermore, ectopic expression of STIM1 promoted CRC cell motility, while depletion of STIM1 with shRNA inhibited CRC cell migration. Our data further suggested that STIM1 promoted CRC cell migration through increasing the expression of cyclooxygenase-2 (COX-2) and production of prostaglandin E2 (PGE2). Importantly, ectopically expressed COX-2 or exogenous PGE2 were able to rescue migration defect in STIM1 knockdown CRC cells, and inhibition of COX-2 with ibuprofen and indomethacin abrogated STIM1-mediated CRC cell motility. In short, our data provided clinicopathological significance for STIM1 and store-operated Ca2+ entry in CRC progression, and implicated a role for COX-2 in STIM1-mediated CRC metastasis. Our studies also suggested a new approach to inhibit STIM1-mediated metastasis with COX-2 inhibitors.
Lung cancer is the leading cause of cancer deaths and is the most occurring malignancy worldwide. Unraveling the molecular mechanisms involved in lung tumorigenesis will greatly improve therapy. During early tumorigenesis, rapid proliferating tumor cells require increased activity of endoplasmic reticulum (ER) for protein synthesis, folding and secretion, thereby are subjected to ER stress. Ribosome-binding protein 1 (RRBP1) was originally identified as a ribosome-binding protein located on the rough ER and associated with unfolding protein response (UPR). In this report, we investigated the role of RRBP1 in lung cancer. RRBP1 was highly expressed in lung cancer tissue, as compared with adjacent normal tissues as assessed by immunohistochemistry (IHC) using lung cancer tissue array (n=87). Knockdown of RRBP1 by short-hairpin RNAs caused ER stress and significantly reduced cell viability and tumorigenicity. This effect was associated with a significant reduction in the expression of glucose-regulated protein 78 (GRP78). UPR regulator GRP78, an anti-apoptotic protein that is widely upregulated in cancer, has a critical role in chemotherapy resistance in some cancers. According to our results, cells with a higher level of RRBP1 were more resistant to ER stress. Ectopic expression of RRBP1 alleviated apoptosis that was induced by the ER-stress agent tunicamycin, 2-deoxy-D-glucose (2DG) or doxorubicin via enhancing GRP78 protein expression. A strong correlation was observed between the expression of RRBP1 and GRP78 in tumor biopsies using the database GSE10072. Our results also indicated that RRBP1 may involve in the regulation of mRNA stability of UPR components including ATF6 and GRP78. Taken together, RRBP1 could alleviate ER stress and help cancer cell survive. RRBP1 is critical for tumor cell survival, which may make it a useful target in lung cancer treatment and a candidate for the development of new targeted therapeutics.
BackgroundTumor hypoxia is an important factor related to tumor resistance to radiotherapy and chemotherapy. This study investigated molecules synthesized in colorectal cancer cells during hypoxia to explore the possibility of developing molecular probes capable of detecting cell death and/or the efficiency of radiotherapy and chemotherapy.MethodsAt first, we incubated two human colorectal adenocarcinoma cell lines SW480 (UICC stage II) and SW620 (UICC stage III) cells in hypoxic (≤2% O2, 93% N2, and 5% CO2) and normoxic conditions (20% O2, 75% N2, and 5% CO2) for 24 h and 48 h. The relative expression ratio of GLUT1 mRNA in hypoxic conditions was analyzed by RT-PCR. Ten cancerous tissues collected from human colorectal cancer patients were examined. HIF-1α and HIF-2α levels were measured to indicate the degree of hypoxia, and gene expression under hypoxic conditions was determined. As a comparison, HIF-1α, HIF-2α, and GLUT1 levels were measured in the peripheral blood of 100 CRC patients.ResultsHypoxia-induced lactate was found to be elevated 3.24- to 3.36-fold in SW480 cells, and 3.06- to 3.17-fold in SW620 cells. The increased relative expression ratio of GLUT1 mRNA, under hypoxic conditions was higher in SW620 cells (1.39- to 1.72-fold elevation) than in SW480 cells (1.24- to 1.66-fold elevation). HIF-1α and HIF-2α levels were elevated and GLUT1 genes were significantly overexpressed in CRC tissue specimens. The elevated ratio of GLUT1 was higher in stage III and IV CRC tissue specimens than in the stage I and II (2.97–4.73 versus 1.44–2.11). GLUT1 mRNA was also increased in the peripheral blood of stage II and III CRC patients as compared to stage I patients, suggesting that GLUT1 may serve as a hypoxic indicator in CRC patients.ConclusionIn conclusion, this study demonstrated that GLUT1 has the potential to be employed as a molecular marker to indicate the degree of hypoxia experienced by tumors circulating in the blood of cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.