Combining machine learning with neuroimaging data has a great potential for early diagnosis of mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, it remains unclear how well the classifiers built on one population can predict MCI/AD diagnosis of other populations. This study aimed to employ a spectral graph convolutional neural network (graph-CNN), that incorporated cortical thickness and geometry, to identify MCI and AD based on 3089 T 1 -weighted MRI data of the ADNI-2 cohort, and to evaluate its feasibility to predict AD in the ADNI-1 cohort (n = 3602) and an Asian cohort (n = 347). For the ADNI-2 cohort, the graph-CNN showed classification accuracy of controls (CN) vs. AD at 85.8% and early MCI (EMCI) vs. AD at 79.2%, followed by CN vs. late MCI (LMCI) (69.3%), LMCI vs. AD (65.2%), EMCI vs. LMCI (60.9%), and CN vs. EMCI (51.8%). We demonstrated the robustness of the graph-CNN among the existing deep learning approaches, such as Euclidean-domain-based multilayer network and 1D CNN on cortical thickness, and 2D and 3D CNNs on T 1 -weighted MR images of the ADNI-2 cohort. The graph-CNN also achieved the prediction on the conversion of EMCI to AD at 75% and that of LMCI to AD at 92%. The find-tuned graph-CNN further provided a promising CN vs. AD classification accuracy of 89.4% on the ADNI-1 cohort and >90% on the Asian cohort. Our study demonstrated the feasibility to transfer AD/MCI classifiers learned from one population to the other. Notably, incorporating cortical geometry in CNN has the potential to improve classification performance.
Rapid advances in neuroimaging techniques have provided an efficient and noninvasive way for exploring the structural and functional connectivity of the human brain. Quantitative measurement of abnormality of brain connectivity in patients with neurodegenerative diseases, such as mild cognitive impairment (MCI) and Alzheimer’s disease (AD), have also been widely reported, especially at a group level. Recently, machine learning techniques have been applied to the study of AD and MCI, i.e., to identify the individuals with AD/MCI from the healthy controls (HCs). However, most existing methods focus on using only a single property of a connectivity network, although multiple network properties, such as local connectivity and global topological properties, can potentially be used. In this paper, by employing multikernel based approach, we propose a novel connectivity based framework to integrate multiple properties of connectivity network for improving the classification performance. Specifically, two different types of kernels (i.e., vector-based kernel and graph kernel) are used to quantify two different yet complementary properties of the network, i.e., local connectivity and global topological properties. Then, multikernel learning (MKL) technique is adopted to fuse these heterogeneous kernels for neuroimaging classification. We test the performance of our proposed method on two different data sets. First, we test it on the functional connectivity networks of 12 MCI and 25 HC subjects. The results show that our method achieves significant performance improvement over those using only one type of network property. Specifically, our method achieves a classification accuracy of 91.9%, which is 10.8% better than those by single network-property-based methods. Then, we test our method for gender classification on a large set of functional connectivity networks with 133 infants scanned at birth, 1 year, and 2 years, also demonstrating very promising results.
Abstract. Mild cognitive impairment (MCI) is difficult to diagnose due to its subtlety. Recent emergence of advanced network analysis techniques utilizing resting-state functional Magnetic Resonance Imaging (rs-fMRI) has made the understanding of neurological disorders more comprehensively at a whole-brain connectivity level. However, inferring effective brain connectivity from fMRI data is a challenging task, particularly when the ultimate goal is to obtain good control-patient classification performance. Incorporating sparsity into connectivity modeling can potentially produce results that are biologically more meaningful since most biologically networks are formed by a relatively few number of connections. However, this constraint, when applied at an individual level, will degrade classification performance due to inter-subject variability. To address this problem, we consider a constrained sparse linear regression model associated with the least absolute shrinkage and selection operator (LASSO). Specifically, we introduced sparsity into brain connectivity via l1-norm penalization, and ensured consistent non-zero connections across subjects via l2-norm penalization. Our results demonstrate that the constrained sparse network gives better classification performance than the conventional correlation-based network, indicating its greater sensitivity to early stage brain pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.