Accurate classification of Alzheimer’s Disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI), plays a critical role in possibly preventing progression of memory impairment and improving quality of life for AD patients. Among many research tasks, it is of particular interest to identify noninvasive imaging biomarkers for AD diagnosis. In this paper, we present a robust deep learning system to identify different progression stages of AD patients based on MRI and PET scans. We utilized the dropout technique to improve classical deep learning by preventing its weight co-adaptation, which is a typical cause of over-fitting in deep learning. In addition, we incorporated stability selection, an adaptive learning factor, and a multi-task learning strategy into the deep learning framework. We applied the proposed method to the ADNI data set and conducted experiments for AD and MCI conversion diagnosis. Experimental results showed that the dropout technique is very effective in AD diagnosis, improving the classification accuracies by 5.9% on average as compared to the classical deep learning methods.
In this work, we are interested in predicting the diagnostic statuses of potentially neurodegenerated patients using feature values derived from multi-modality neuroimaging data and biological data, which might be incomplete. Collecting the feature values into a matrix, with each row containing a feature vector of a sample, we propose a framework to predict the corresponding associated multiple target outputs (e.g., diagnosis label and clinical scores) from this feature matrix by performing matrix shrinkage following by matrix completion. Specifically, we first combine the feature and target output matrices into a large matrix and then partition this large incomplete matrix into smaller submatrices, each consisting of samples with complete feature values (corresponding to a certain combination of modalities) and target outputs. Treating each target output as the outcome of a prediction task, we apply a 2-step multi-task learning algorithm to select the most discriminative features and samples in each submatrix. Features and samples that are not selected in any of the submatrices are discarded, resulting in a shrunk version of the original large matrix. The missing feature values and unknown target outputs of the shrunk matrix is then completed simultaneously. Experimental results using the ADNI dataset indicate that our proposed framework achieves higher classification accuracy at a greater speed when compared with conventional imputation-based classification methods and also yields competitive performance when compared with the state-of-the-art methods.
Accurate segmentation of infant brain magnetic resonance (MR) images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is an indispensable foundation for early studying of brain growth patterns and morphological changes in neurodevelopmental disorders. Nevertheless, in the isointense phase (approximately 6-9 months of age), due to inherent myelination and maturation process, WM and GM exhibit similar levels of intensity in both T1-weighted (T1w) and T2-weighted (T2w) MR images, making tissue segmentation very challenging. Despite many efforts devoted to brain segmentation, only few studies have focused on the segmentation of 6-month infant brain images. With the idea of boosting methodological development in the community, iSeg-2017 challenge (http://iseg2017.web.unc.edu) provides a set of 6-month infant subjects with manual labels for training and testing the participating methods. Among the 21 automatic segmentation methods participating in iSeg-2017, we review the 8 top-ranked teams, in terms of Dice ratio, modified Hausdorff distance and average surface distance, and introduce their
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.