In this paper we consider a probabilistic signal-to-interference-and-noise ratio (SINR) constrained problem for transmit beamforming design in the presence of imperfect channel state information (CSI), under a multiuser multiple-input single-output (MISO) downlink scenario. In particular, we deal with outage-based quality-of-service constraints, where the probability of each user's SINR not satisfying a service requirement must not fall below a given outage probability specification. The study of solution approaches to the probabilistic SINR constrained problem is important because CSI errors are often present in practical systems and they may cause substantial SINR outages if not handled properly. However, a major technical challenge is how to process the probabilistic SINR constraints. To tackle this, we propose a novel relaxation-restriction (RAR) approach, which consists of two key ingredientssemidefinite relaxation (SDR), and analytic tools for conservatively approximating probabilistic constraints. The underlying goal is to establish approximate probabilistic SINR constrained formulations in the form of convex conic optimization problems, so that they can be readily implemented by available solvers. Using either an intuitive worst-case argument or specialized probabilistic results, we develop various conservative approximation schemes for processing probabilistic constraints with quadratic uncertainties. Consequently, we obtain several RAR alternatives for handling the probabilistic SINR constrained problem. Our techniques apply to both complex Gaussian CSI errors and i.i.d. bounded CSI errors with unknown distribution. Moreover, results obtained from our extensive simulations show that the proposed RAR methods significantly improve upon existing ones, both in terms of solution quality and computational complexity.
Blind hyperspectral unmixing (HU), also known as unsupervised HU, is one of the most prominent research topics in signal processing (SP) for hyperspectral remote sensing [1], [2]. Blind HU aims at identifying materials present in a captured scene, as well as their compositions, by using high spectral resolution of hyperspectral images. It is a blind source separation (BSS) problem from a SP viewpoint. Research on this topic started in the 1990s in geoscience and remote sensing [3]- [7], enabled by technological advances in hyperspectral sensing at the time. In recent years, blind HU has attracted much interest from other fields such as SP, machine learning, and optimization, and the subsequent cross-disciplinary research activities have made blind HU a vibrant topic. The resulting impact is not just on remote sensing-blind HU has provided a unique problem scenario that inspired researchers from different fields to devise novel blind SP methods. In fact, one may say that blind HU has established a new branch of BSS approaches not seen in classical BSS studies. In particular, the convex geometry concepts-discovered by early remote sensing researchers through empirical observations [3]- [7] and refined by later research-are elegant and very different from statistical independence-based BSS approaches established in
Multi-cell coordinated beamforming (MCBF), where multiple base stations (BSs) collaborate with each other in the beamforming design for mitigating the inter-cell interference, has been a subject drawing great attention recently. Most MCBF designs assume perfect channel state information (CSI) of mobile stations (MSs); however CSI errors are inevitable at the BSs in practice. Assuming elliptically bounded CSI errors, this paper studies the robust MCBF design problem that minimizes the weighted sum power of BSs subject to worst-case signal-to-interference-plus-noise ratio (SINR) constraints on the MSs. Our goal is to devise a distributed optimization method that can obtain the worst-case robust beamforming solutions in a decentralized fashion, with only local CSI used at each BS and little backhaul signaling for message exchange between BSs. However, the considered problem is difficult to handle even in the centralized form. We first propose an efficient approximation method in the centralized form, based on the semidefinite relaxation (SDR) technique. To obtain the robust beamforming solution in a decentralized fashion, we further propose a distributed robust MCBF algorithm, using a distributed convex optimization technique known as alternating direction method of multipliers (ADMM). We analytically show the convergence of the proposed distributed robust MCBF algorithm to the optimal centralized solution and its better bandwidth efficiency in backhaul signaling over the existing dual decomposition based algorithms. Simulation results are presented to examine the effectiveness of the proposed SDR method and the distributed robust MCBF algorithm.
Hyperspectral unmixing aims at identifying the hidden spectral signatures (or endmembers) and their corresponding proportions (or abundances) from an observed hyperspectral scene. Many existing approaches to hyperspectral unmixing rely on the pure-pixel assumption, which may be violated for highly mixed data. A heuristic unmixing criterion without requiring the pure-pixel assumption has been reported by Craig: The endmember estimates are determined by the vertices of a minimum-volume simplex enclosing all the observed pixels. In this paper, using convex analysis, we show that the hyperspectral unmixing by Craig's criterion can be formulated as an optimization problem of finding a minimum-volume enclosing simplex (MVES). An algorithm that cyclically solves the MVES problem via linear programs (LPs) is also proposed. Some Monte Carlo simulations are provided to demonstrate the efficacy of the proposed MVES algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.