Background/Aims: Dysfunction of endothelial progenitor cell (EPCs) contributes to diabetic vascular disease. We reported that downregulated miR-126 in diabetic patients causes EPC dysfunction. The study was designed to investigate how high glucose (HG) and advanced glycation end products (AGEs) regulate miR-126 expression and whether miR-126 mediates the effects of HG and AGEs on EPCs. Methods: We first tested the effects of glucose (5.5-50 m
Background: Endothelial progenitor cells (EPCs) contribute to reendothelialization and neovascularization and protect against vascular injury and ischemia of various organs. We have previously shown downregulation of microRNA (miR)-126 in EPCs from diabetic patients, which contributes to dysfunction of EPCs including impaired migratory ability. The aims of the present study were to examine (1) in vitro the effects of miR-126 on the homing and stemness of late outgrowth EPCs (LOCs), along with relevant signaling pathways, and (2) in vivo the effects of modulating LOCs by manipulating miR-126 expression on LOC homing and reendothelialization of injured arteries in GK rats (a non-obese diabetes model). Methods: Rat bone marrow-derived LOCs were transfected with miR-126 inhibitor or lentiviral vectors expressing miR-126. LOC migration was determined by transwell migration assay. CXCR4 expression was measured by real-time PCR, Western blotting, and confocal microscopy while related signaling pathway proteins were measured by Western Blotting. Stemness gene expression, and gene and protein expression and promoter activity of KLF-8 were also measured. LOCs transfected with lenti-miR-126 or miR-126 inhibitor were injected into GK rats with carotid artery injury, and then vascular reendothelialization and the extent of intimal hyperplasia were examined. Results: Lenti-miR-126 increased while miR-126 inhibitor decreased LOC migration and CXCR4 expression on LOCs. miR-126 positively regulated pERK , VEGF, p-Akt, and eNOS protein expression, and inhibitors of these proteins blocked miR-126-induced CXCR4 expression and also reduced LOC migration. Overexpression of miR-126 promoted while inhibition of miR-126 suppressed stemness gene expression in LOCs. miR-126 also inhibited gene and protein expression and promoter activity of KLF-8 while shRNA-mediated knockdown of KLF-8 increased stemness gene expression. Upregulation of stemness gene expression by miR-126 overexpression was completely abrogated by cotransfection of lenti-KLF-8 and lenti-miR-126 into LOCs. In GK rats, transplantation of LOCs overexpressing miR-126 enhanced LOC homing and reendothelialization and decreased intimal hyperplasia of injured arteries. Conclusion: Our results indicate that miR-126 protects against vascular injury by promoting CXCR4 expression and LOC homing via ERK/VEGF and Akt/eNOS signaling pathways and maintaining stemness via targeting KLF-8.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.