Background. Adipose-derived mesenchymal stem cells (ADMSCs) can promote healing and inhibit inflammation/immune response in local tissues, while the detailed mechanism remains unknown. Results. ADMSCs and peritoneal macrophages were collected from C57BL/6 mice. The culture medium (CM) from ADMSCs (24 hours cultured) was collected. The CM was added to the Mφ culture system with lipopolysaccharide (LPS) or IL-4/IL-13 or blank. And those Mφ cultures without adding CM were used as controls. A series of classification markers and signaling pathways for Mφ polarization were detected by using flow cytometry, RT-PCR, and western blotting. Furthermore, the cell viability of all the groups was detected by CCK8 assay. After CM induction in different groups, M1-Mφ markers and M2a-Mφ were decreased; however, M2b/c-Mφ markers increased. STAT3/SOCS3 and STAT6/IRF4 were suppressed in all 3 CM-treated groups. Moreover, the cell viability of all 3 groups which were induced by CM significantly increased as compared to that of the control groups without adding CM. Conclusion. ADMSCs can induce nonactivated macrophage and M1-Mφ into M2b/c-Mφ. Downregulation of the STAT3 and STAT6 pathway may involve in this process. This data shows that the anti-inflammatory role of ADMSC in local tissues may be partly due to their effect on Mφ to M2b/c-Mφ.
Testicular structural and functional impairment is a serious complication in male diabetes mellitus (DM) patients that leads to impaired fertility in adulthood. In contrast to other endocrine therapies, islet transplantation (IT) can effectively prevent and even reverse diabetic nephropathy and myocardial damage. However, whether IT can alleviate diabetes-induced testicular injury remains unclear. In this study, we sought to investigate the effect of IT on diabetes-induced testicular damage. A diabetic rat model was established by streptozotocin injection. DM, IT, and insulin treatment (INS) groups were compared after 4 weeks of respective treatment. We confirmed that IT could effectively attenuate diabetes-induced testicular damage and recover sperm counts more extensively compared with INS in diabetic rats. In addition, significantly higher levels of superoxide dismutase (SOD) activity and lower contents of malondialdehyde (MDA) were detected in the testes of the IT group versus diabetic rats. Mechanism studies revealed that IT significantly activates the expression of Nrf-2, HO-1, and NQO-1 and inhibits upregulation of the NF-κB expression in response to DM, while INS only exhibit slight impact on the protein expression. Therefore, we speculate that IT may prevent the progression of testicular damage by downregulating oxidative stress and inhibiting inflammation via Nrf-2/HO-1 and NF-κB pathways.
Pancreatic cancer is a severe disease with high morbidity and mortality. However, the primary molecular mechanisms of pancreatic tumor formation and progression remain unclear. The present study using sequencing technology revealed that the centromere protein M (CENPM) gene was overexpressed in pancreatic cancer tissues. CENPM is one of the components of a complex that plays a central role in kinetochore protein assembly, mitotic progression and chromosome segregation. However, the biological function of CENPM in pancreatic cancer has yet to be determined. Hence, two effective siRNAs were designed to knock down CENPM. Notably, downregulation of CENPM inhibited pancreatic cancer cell proliferation, altered the cell cycle and limited pancreatic cancer cell migration and invasion via the mTOR/p70S6K signaling pathway. This research provides new evidence that CENPM overexpression plays a significant role in the progression of pancreatic cancer. Overall, the present findings indicated that CENPM may be a significant biomarker for predicting the development and progression of pancreatic malignancy.
Objective. Abnormal signaling pathways play a crucial role in the mechanisms of podocyte injury in diabetic nephropathy. They also affect the recovery of podocytes after islet transplantation (IT). However, the specific signaling abnormalities that affect the therapeutic effect of IT on podocytes remains unclear. The purpose of this study was to assess whether the RhoA/ROCK/NF-κB signaling pathway is related to podocyte restoration after IT. Methods. A mouse model of diabetic nephropathy was established in vivo using streptozotocin. The mice were then subsequently reared for 4 weeks after islet transplantation to determine the effect of IT. Islet cells, CCG-1423 (RhoA Inhibitor), and fasudil (ROCK inhibitor) were then cocultured with podocytes in vitro to assess their protective effects on podocyte injury induced by high glucose (HG). Protein expression levels of RhoA, ROCK1, synaptopodin, IL-6, and MCP-1 in kidney tissues were then measured using immunohistochemistry and Western blotting techniques. Results. Islet transplantation reduced the expression levels of RhoA/ROCK1 and that of related inflammatory factors such as IL-6 and MCP-1 in the kidney podocytes of diabetic nephropathy. In the same line, islet cells reduced the expression of RhoA, ROCK1, and pp65 in immortalized podocytes under high glucose (35.0 mmol/L glucose) conditions. Conclusions. Islet transplantation can reverse podocyte injury in diabetes nephropathy by inhibiting the RhoA/ROCK1 signaling pathway. Islet cells have a strong protective effect on podocytes treated with high glucose (35.0 mmol/L glucose). Discovery of signaling pathways affecting podocyte recovery is helpful for individualized efficacy evaluation and targeted therapy of islet transplantation patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.