We have used a neuraminidase-deficient influenza virus, NWS-Mvi, which was selected by supplying bacterial neuraminidase in the medium (C. Liu and G. M. Air, Virology 194:403-407, 1993), to define the role of neuraminidase in influenza virus replication. Electron microscopy showed that virions of the NWS-Mvi mutant assembled normally and formed large aggregates associated with cell surfaces. The NWS-Mvi virus grown in the absence of neuraminidase was able to carry out a second round of replication in MDCK cells without added neuraminidase, indicating that the virus particles contained in these aggregates were infectious. Aggregates of virus were also found in cytoplasmic vacuoles. When virus-infected cells were incubated in the presence of ferritin, such aggregates were found to be labeled with ferritin, indicating that they are derived from uptake at the cell surface. When the neuraminidase-deficient virus was administered intranasally to C57BL/6 mice, low titers of virus were recovered from the lungs and major histocompatibility complex class I-restricted cytotoxic T cells were generated: evidence that cells were infected in vivo. In C57BL/6 nu/nu mice, the low level of virus persisted for at least 28 days but never increased. These results suggest that neuraminidase is not required for influenza virus entry, replication, or assembly in cell culture or in mice.
Conductive inks for the future printed electronics should have the following merits: high conductivity, flexibility, low cost, and compatibility with wide range of substrates. However, the state-of-the-art conductive inks based on metal nanoparticles are high in cost and poor in flexibility. Herein, we reported a highly conductive, low cost, and super flexible ink based on graphene nanoplatelets. The graphene ink has been screen-printed on plastic and paper substrates. Combined with postprinting treatments including thermal annealing and compression rolling, the printed graphene pattern shows a high conductivity of 8.81 × 104 S m–1 and good flexibility without significant conductivity loss after 1000 bending cycles. We further demonstrate that the printed highly conductive graphene patterns can act as current collectors for supercapacitors. The supercapacitor with the printed graphene pattern as the current collector and printed activated carbon as the active material shows a good rate capability of up to 200 mV s–1. This work potentially provides a promising route toward the large-scale fabrication of low cost yet flexible printed electronic devices.
Pyrimidine-mediated regulation of pyrBI operon expression in Escherichia coli K-12 occurs primarily by an attenuation control mechanism. Previous studies have suggested a model for attenuation control in which low intracellular levels of UTP cause close coupling of transcription and translation within the pyrBI leader region. This close coupling apparently prevents transcriptional termination at an attenuator (a p-independent transcriptional terminator) located 23 base pairs before the pyrBI structural genes within an open reading frame for a 44-amino acid leader polypeptide. Presumably, a ribosome involved in the synthesis of the leader polypeptide disrupts or precludes the formation of the attenuator-encoded RNA hairpin, which is required for transcriptional termination. In this study, we examined the role of the ribosome in inhibiting transcriptional termination at the pyrBI attenuator. Using oligonucleotide-directed mutagenesis, we systematically introduced termination codons into the reading frame for the leader polypeptide to determine the distance a ribosome must translate to suppress transcriptional termination. These mutations were incorporated individually into a pyrB::lacZ gene fusion, which was then introduced into the E. coli chromosome. The resulting fusion strains were used to measure the effect of each mutation on pyrB::lacZ expression. The results show that a ribosome must translate to within 14-16 nucleotides of the attenuator-encoded RNA hairpin to inhibit transcriptional termination efficiently, which indicates a direct interaction between the ribosome and the termination hairpin sequence as proposed in the present model. Additional results indicate that factors not included in the present model for attenuation control contribute to the expression and regulation of the pyrBI operon.The pyrBI operon of Escherichia coli K-12 encodes the catalytic (pyrB) and regulatory (pyrI) subunits of the pyrimidine biosynthetic enzyme aspartate transcarbamoylase (ATCase; carbamoyl-phosphate:L-aspartate carbamoyltransferase, EC 2.1.3.2). Expression of this operon is negatively regulated over a several hundredfold range by pyrimidine availability. This regulation occurs, at least in large part, by a UTP-sensitive attenuation control mechanism (1, 2). Previous studies have indicated that transcriptional termination at the pyrBI attenuator, which is a p-independent transcriptional terminator located 23 base pairs (bp) upstream of the pyrB structural gene (see Fig. 1), is regulated by the relative rates of transcription and translation within the pyrBI leader region (1,(3)(4)(5).According to the present model for attenuation control of pyrBI operon expression, low intracellular levels of UTP cause RNA polymerase to stall at UTP-sensitive pause sites (uridine-rich regions in the leader transcript) preceding the attenuator (see Fig. 1 DNA Preparations. Plasmid DNA (1), DNA from phages M13 (1) and A (6), and DNA restriction fragments (1) were prepared as previously described. Oligonucleotides were synthesize...
Neuraminidase (NA)-deficient mutant virus stocks have been obtained by passaging A/NWS/33HA-tern/Australia/G70c/75NA (H1N9) influenza virus in medium containing neuraminidase from Micromonospora viridifaciens and antiserum against the influenza NA. Growth of the resulting mutants is dependent on addition of bacterial neuraminidase to the medium. Nucleotide sequence analysis showed large single deletions in the NA genes, with both ends of the NA gene segments conserved. These RNA fragments all have the capacity to code for a peptide that contains the N-terminal "tail" and membrane-anchoring region of the NA, but the presence of this peptide has not been demonstrated in virions or infected cells. In contrast to the ease of selection of NA-deficient mutants from the H1N9 virus, no mutants were selected from three other viruses. The HA-coding segments of parental H1N9 and mutant NWSc-Mvi predict a change of Pro to His at residue 227 (H3 numbering), close to the receptor-binding site of H3 HA, compared to the HA of an H1N2 reassortant that contains the NWS/33 HA gene. This change may contribute to an altered HA specificity that allows selection of mutants that can infect cells in the presence of high levels of NA activity. It appears that the role of NA in influenza infection is to remove sialic acid from the HA rather than to destroy receptors on cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.