In wireless sensor networks, when a sensor node detects events in the surrounding environment, the sensing period for learning detailed information is likely to be short. However, the short sensing cycle increases the data traffic of the sensor nodes in a routing path. Since the high traffic load causes a data queue overflow in the sensor nodes, important information about urgent events could be lost. In addition, since the battery energy of the sensor nodes is quickly exhausted, the entire lifetime of wireless sensor networks would be shortened. In this paper, to address these problem issues, a new routing protocol is proposed based on a lightweight genetic algorithm. In the proposed method, the sensor nodes are aware of the data traffic rate to monitor the network congestion. In addition, the fitness function is designed from both the average and the standard deviation of the traffic rates of sensor nodes. Based on dominant gene sets in a genetic algorithm, the proposed method selects suitable data forwarding sensor nodes to avoid heavy traffic congestion. In experiments, the proposed method demonstrates efficient data transmission due to much less queue overflow and supports fair data transmission for all sensor nodes.From the results, it is evident that the proposed method not only enhances the reliability of data transmission but also distributes the energy consumption across wireless sensor networks.
Intelligent transport systems (ITS) are a convergence of information technology and transportation systems as seen in the variable speed limit (VSL) system. Since the VSL system controls the speed limit according to the traffic conditions, it can improve the safety and efficiency of a transport network. Many researchers have studied the real-time VSL (RVSL) algorithm based on real-time traffic information from multiple stations recording traffic data. However, this method can suffer from inaccurate selection of the VSL start station (VSS), incorrect VSL calculations, and is unable to quickly react to the changing traffic conditions. Unstable VSL systems result in more congestion on freeways. In this study, an enhanced VSL algorithm (EVSL) is proposed to address the limitations of the existing RVSL algorithm. This selects preliminary VSL start stations (pVSS), which is expected to end congestion using acceleration and allocates final VSSs for each congestion interval using selected pVSS. This controls the vehicles that entered the congestion area based on the selected VSS. We used four metrics to evaluate the performance of the proposed VSL (VSS stability assessment, speed control stability assessment, travel time, and shockwave), which were all enhanced when compared to the standard RVSL algorithm. In addition, the EVSL algorithm showed stable VSL performance, which is critical for road safety.
Wireless sensor networks offer a distributed processing environment. Many sensor nodes are deployed in fields that have limited resources such as computing power, network bandwidth, and electric power. The sensor nodes construct their own networks automatically, and the collected data are sent to the sink node. In these traditional wireless sensor networks, network congestion due to packet flooding through the networks shortens the network life time. Clustering or in-network technologies help reduce packet flooding in the networks. Many studies have focused on saving energy in the sensor nodes because the limited available power leads to an important problem of extending the operation of sensor networks as long as possible. However, we focus on the execution time because clustering and local distributed processing already contribute to saving energy by local decision making. In this paper, we present a cooperative processing model based on the processing timeline. Our processing model includes validation of the processing, prediction of the total execution time, and determination of the optimal number of processing nodes for distributed processing in wireless sensor networks. The experiments demonstrate the accuracy of the proposed model, and a case study shows that our model can be used for the distributed application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.