A speech act is a linguistic action intended by a speaker. Speech act classification is an essential part of a dialogue understanding system because the speech act of an utterance is closely tied with the user's intention in the utterance. We propose a neural network model for Korean speech act classification. In addition, we propose a method that extracts morphological features from surface utterances and selects effective ones among the morphological features. Using the feature selection method, the proposed neural network can partially increase precision and decrease training time. In the experiment, the proposed neural network showed better results than other models using comparatively high-level linguistic features. Based on the experimental result, we believe that the proposed neural network model is suitable for real field applications because it is easy to expand the neural network model into other domains. Moreover, we found that neural networks can be useful in speech act classification if we can convert surface sentences into vectors with fixed dimensions by using an effective feature selection method.
Previous researchers have considered sentiment analysis as a document classification task, in which input documents are classified into predefined sentiment classes. Although there are sentences in a document that support important evidences for sentiment analysis and sentences that do not, they have treated the document as a bag of sentences. In other words, they have not considered the importance of each sentence in the document. To effectively determine polarity of a document, each sentence in the document should be dealt with different degrees of importance. To address this problem, we propose a document-level sentence classification model based on deep neural networks, in which the importance degrees of sentences in documents are automatically determined through gate mechanisms. To verify our new sentiment analysis model, we conducted experiments using the sentiment datasets in the four different domains such as movie reviews, hotel reviews, restaurant reviews, and music reviews. In the experiments, the proposed model outperformed previous state-of-the-art models that do not consider importance differences of sentences in a document. The experimental results show that the importance of sentences should be considered in a document-level sentiment classification task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.