A speech act is a linguistic action intended by a speaker. Speech act classification is an essential part of a dialogue understanding system because the speech act of an utterance is closely tied with the user's intention in the utterance. We propose a neural network model for Korean speech act classification. In addition, we propose a method that extracts morphological features from surface utterances and selects effective ones among the morphological features. Using the feature selection method, the proposed neural network can partially increase precision and decrease training time. In the experiment, the proposed neural network showed better results than other models using comparatively high-level linguistic features. Based on the experimental result, we believe that the proposed neural network model is suitable for real field applications because it is easy to expand the neural network model into other domains. Moreover, we found that neural networks can be useful in speech act classification if we can convert surface sentences into vectors with fixed dimensions by using an effective feature selection method.
We propose a Question-answering (QA) system in Korean that uses a predictive answer indexer. The predictive answer indexer, first, extracts all answer candidates in a document in indexing time. Then, it gives scores to the adjacent content words that are closely related with each answer candidate. Next, it stores the weighted content words with each candidate into a database. Using this technique, along with a complementary analysis of questions, the proposed QA system can save response time because it is not necessary for the QA system to extract answer candidates with scores on retrieval time. If the QA system is combined with a traditional Information Retrieval system, it can improve the document retrieval precision for closed-class questions after minimum loss of retrieval time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.