The purpose of this study was to determine the effects of apigenin and astragalus polysaccharides on the cryopreservation of bovine semen. Apigenin, astragalus polysaccharides, or their combination were added to a frozen diluent of bovine semen. Afterwards, Computer Assisted Semen Analysis (CASA), membrane functionality, acrosome integrity, mitochondrial integrity, CAT, SOD, GSH-Px, MDA, and ROS detection were conducted. The results showed that adding 0.2 mmol/L AP or 0.5 mg/mL APS could improve the quality of frozen sperm. Compared to 0.2 mmol/L AP alone, the combination of 0.2 mmol/L AP and 0.3 mg/mL APS significantly increased the total motility (TM), average path distance (DAP), straight line distance (DSL), average path velocity (VAP), curvilinear velocity (VCL), wobble (WOB), and sperm CAT and SOD levels (p < 0.05), while reducing the ROS and MDA levels (p < 0.05). These results indicated that the addition of 0.2 mmol/L AP or 0.5 mg/mL APS alone has a protective effect on the freezing of bovine semen. Compared to the addition of 0.2 mmol/L AP, a combination of 0.2 mmol/L AP and 0.3 mg/mL APS could further improve the quality of frozen semen.
To determine the effects of epigallocatechin-3-gallate (EGCG) on the cryopreservation of bovine semen, epigallocatechin-3-gallate dissolved with double distilled water to 0.2, 0.4, 0.6 and 0.8 mg/ml were added to the cryopreservation diluent of the bull semen. Then, we used computer-assisted analysis of semen kinematic parameters, staining method to detect membrane function, acrosome integrity, enzyme-linked immunosorbent assay to detect catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehydes (MDA) and reactive oxygen levels.The results showed that adding 0.6 mg/L of epigallocatechin-3-gallate could improve the cryopreserved sperm quality, which significantly increased the total motility, distance average path, distance straight line, distance curved line, average path velocity, curvilinear-velocity, straight-line velocity, amplitude of lateral head displacement and beat/cross frequency, as well as sperm CAT, GSH-Px and SOD levels (p < 0.05), whilst reducing the reactive oxygen species and MDA levels (p < 0.05). Hence, these results indicate that the addition of 0.6 mg/ml of EGCG has a protective effect on the cryopreservation of the bovine semen.
Fatty acids (FAs) are classified into different types according to the degree of hydrocarbon chain saturation, including saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), omega-3 polyunsaturated fatty acids (omega-3 PUFAs) and omega-6 polyunsaturated fatty acids (omega-6 PUFAs), which play an important role in maintaining semen quality. This review focuses on the regulation of FAs in semen, diet and extender on semen quality, and expounds its effects on sperm motility, plasma membrane integrity, DNA integrity, hormone content, and antioxidant capacity. It can be concluded that there are species differences in the FAs profile and requirements in sperm, and their ability to regulate semen quality is also affected by the addition methods or dosages. Future research directions should focus on analyzing the FAs profiles of different species or different periods of the same species and exploring suitable addition methods, doses and mechanism of regulating semen quality.
At present, spent mushroom substrate (SMS) is a waste resource that is producing a pollution problem in China, and which has some use as animal feed or fertilizer, has not been assessed as a feed for deer. The purpose of this study is to expand the feed of male sika deer and reduce the feeding cost by using the waste resource of SMS. The 10% concentrated supplement was replaced with SMS and the feed intake, apparent digestibility, blood index and velvet production of male sika deer were measured. As the results showed, compared to the control group, the substitution of SMS for 10% of the concentrate supplement decreased the concentration of IgA (p < 0.01), replacing 10% concentrated supplement with SMS of Pleurotus ostreatus (SMS-MP) reduced the intake of organic matter (OMI) and improved the digestibility of ether extract (EE), while replacing 10% concentrated supplement with SMS of Flammulina velutipes (SMS-MF) had no effect on apparent nutrient digestibility, feed intake, velvet antler production, and biochemical indexes. In conclusion, SMS had no effect on serum biochemical indexes and the ratio of the feed weight of the deer supplement to the weight of velvet antler (p > 0.05). At the same time, SMS could reduce the feed consumption and improve the economy by using SMS as a waste resource.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.