Adipose tissue is an attractive source of mesenchymal stem cells (MSCs) because of its abundance and accessibility. We have previously defined a population of native MSCs termed perivascular stem cells (PSCs), purified from diverse human tissues, including adipose tissue. Human PSCs (hPSCs) are a bipartite cell population composed of pericytes (CD146+CD34-CD45-) and adventitial cells (CD146-CD34+CD45-), isolated by fluorescence-activated cell sorting and with properties identical to those of culture identified MSCs. Our previous studies showed that hPSCs exhibit improved bone formation compared with a sample-matched unpurified population (termed stromal vascular fraction); however, it is not known whether hPSCs would be efficacious in a spinal fusion model. To investigate, we evaluated the osteogenic potential of freshly sorted hPSCs without culture expansion and differentiation in a rat model of posterolateral lumbar spinal fusion. We compared increasing dosages of implanted hPSCs to assess for dose-dependent efficacy. All hPSC treatment groups induced successful spinal fusion, assessed by manual palpation and microcomputed tomography. Computerized biomechanical simulation (finite element analysis) further demonstrated bone fusion with hPSC treatment. Histological analyses showed robust endochondral ossification in hPSC-treated samples. Finally, we confirmed that implanted hPSCs indeed differentiated into osteoblasts and osteocytes; however, the majority of the new bone formation was of host origin. These results suggest that implanted hPSCs positively regulate bone formation via direct and paracrine mechanisms. In summary, hPSCs are a readily available MSC population that effectively forms bone without requirements for culture or predifferentiation. Thus, hPSC-based products show promise for future efforts in clinical bone regeneration and repair.
Autologous bone grafts (ABGs) are considered as the gold standard for spinal fusion. However, osteoporotic patients are poor candidates for ABGs due to limited osteogenic stem cell numbers and function of the bone microenvironment. There is a need for stem cell‐based spinal fusion of proven efficacy under either osteoporotic or nonosteoporotic conditions. The purpose of this study is to determine the efficacy of human perivascular stem cells (hPSCs), a population of mesenchymal stem cells isolated from adipose tissue, in the presence and absence of NELL‐1, an osteogenic protein, for spinal fusion in the osteoporosis. Osteogenic differentiation of hPSCs with and without NELL‐1 was tested in vitro. The results indicated that NELL‐1 significantly increased the osteogenic potential of hPSCs in both osteoporotic and nonosteoporotic donors. Next, spinal fusion was performed by implanting scaffolds with regular or high doses of hPSCs, with or without NELL‐1 in ovariectomized rats (n = 41). Regular doses of hPSCs or NELL‐1 achieved the fusion rates of only 20%–37.5% by manual palpation. These regular doses had previously been shown to be effective in nonosteoporotic rat spinal fusion. Remarkably, the high dose of hPSCs+NELL‐1 significantly improved the fusion rates among osteoporotic rats up to approximately 83.3%. Microcomputed tomography imaging and quantification further confirmed solid bony fusion with high dose hPSCs+NELL‐1. Finally, histologically, direct in situ involvement of hPSCs in ossification was shown using undecalcified samples. To conclude, hPSCs combined with NELL‐1 synergistically enhances spinal fusion in osteoporotic rats and has great potential as a novel therapeutic strategy for osteoporotic patients. Stem Cells 2015;33:3158–3163
Adipose tissue is an attractive source of mesenchymal stem cells (MSCs) because of its abundance and accessibility. We have previously defined a population of native MSCs termed perivascular stem cells (PSCs), purified from diverse human tissues, including adipose tissue. Human PSCs (hPSCs) are a bipartite cell population composed of pericytes (CD146+CD342CD452) and adventitial cells (CD1462CD34+ CD452), isolated by fluorescence-activated cell sorting and with properties identical to those of culture identified MSCs. Our previous studies showed that hPSCs exhibit improved bone formation compared with a sample-matched unpurified population (termed stromal vascular fraction); however, it is not known whether hPSCs would be efficacious in a spinal fusion model. To investigate, we evaluated the osteogenic potential of freshly sorted hPSCs without culture expansion and differentiation in a rat model of posterolateral lumbar spinal fusion. We compared increasing dosages of implanted hPSCs to assess for dose-dependent efficacy. All hPSC treatment groups induced successful spinal fusion, assessed by manual palpation and microcomputed tomography. Computerized biomechanical simulation (finite element analysis) further demonstrated bone fusion with hPSC treatment. Histological analyses showed robust endochondral ossification in hPSC-treated samples. Finally, we confirmed that implanted hPSCs indeed differentiated into osteoblasts and osteocytes; however, the majority of the new bone formation was of host origin. These results suggest that implanted hPSCs positively regulate bone formation via direct and paracrine mechanisms. In summary, hPSCs are a readily available MSC population that effectively forms bone without requirements for culture or predifferentiation. Thus, hPSC-based products show promise for future efforts in clinical bone regeneration and repair. STEM CELLS
Our findings suggest rhNELL-1-based vertebral implantation successfully improved cortical and cancellous bone regeneration in the lumbar spine of osteoporotic sheep. rhNELL-1-based bone graft substitutes represent a potential new local therapy.
Pericytes are contractile cells that surround the endothelium of capillaries and venules throughout the body. Pericytes were once thought to have a limited role in blood pressure control and angiogenesis. Today, knowledge about pericytes and other perivascular stem cells has vastly expanded. The understanding of the biologic significance of pericytes was most changed by the recognition of the perivascular identity of mesenchymal stem cells. The following review article will summarize the known functions and importance of pericytes in particular relevance to tumor biology. These roles include: (1) pericytes as the potential cell of origin for multiple soft tissue tumors; (2) the role of pericyte in regulating tumor cell vascular invasion; and 3) angiotropism or 'pericytic mimicry' as a mechanism of malignant tumor spread. Although not discussed, the role of pericytes in pathophysiology far exceeds the realms of tumor biology, including cardiovascular atherosclerotic disease, chronic kidney disease, fibrotic repair processes, and fibroproliferative diseases. In summary, the known roles of pericytes in tumor formation, growth, and invasion have greatly expanded. These include pericytic differentiation in soft tissue tumors, regulation of vascular invasion in solid tumors, and extravascular migratory migration of common malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.