In this review, we summarize the progress on coarse-grained elastic network models (CG-ENMs) in the past decade. Theories were formulated to allow study of conformational dynamics in time/space frames of biological interest. Several highlighted models and their underlined hypotheses are introduced in physical depth. Important ENM offshoots, motivated to reproduce experimental data as well as to address the slow-mode-encoded configurational transitions, are also introduced. With the theoretical developments, computational cost is significantly reduced due to simplified potentials and coarse-grained schemes. Accumulating wealth of data suggest that ENMs agree equally well with experiment in describing equilibrium dynamics despite their distinct potentials and levels of coarse-graining. They however do differ in the slowest motional components that are essential to address large conformational changes of functional significance. The difference stems from the dissimilar curvatures of the harmonic energy wells described for each model. We also provide our views on the predictability of ‘open to close’ (open→close) transitions of biomolecules on the basis of conformational selection theory. Lastly, we address the limitations of the ENM formalism which are partially alleviated by the complementary CG-MD approach, to be introduced in the second paper of this two-part series.
Molecular dynamics simulations reveal that the hydrophobic cavity in human cytokine Interleukin-1beta is hydrated and can dynamically accommodate between one and four water molecules. These waters have residence times >> 500 ps and can give rise to detectable NOEs, in agreement with NMR observations of Ernst et al. (Science 1995; 267:1813-1817). The waters also display high positional disorder within the cavity, which explains why they have not been resolved crystallographically. The average distribution of water molecules over time within the cavity matches well the low resolution electron density extracted by Yu et al. (Proc Natl Acad Sci 1999; 96:103-108). The water molecules hydrate the hydrophobic cavity preferentially as complex clusters. These clusters result from a combination of hydrogen bonds between the waters and stabilizing interactions between the waters and aromatic rings forming the cavity. Free energy estimates suggest that it takes 4-waters to hydrate the cavity in a thermodynamically stable manner leading to a gain in free energy of transfer from bulk of approximately approximately 3.6 kcal/mol. This arises from the existence of the water clusters in multiple hydrogen bonded states. In addition, the waters are found to migrate either individually or as clusters out of the cavity through several pathways. The upper limit for one-dimensional diffusion of the waters within the protein matrix is 4 A/ps (relative to 6 A/ps for bulk). Simulations reveal pathways in addition to those identified crystallographically, with motions controlled by the rotations of sidechains. We find that only when the hydrophobic cavity is hydrated, do correlated motions couple distant sites with the sites that make contact with the receptor and this data partly offers an explanation of experimental mutagenesis data. Simulations, together with recent observations based on mutagenesis by Heidary et al. (J Mol Biol 2005; 353:1187-1198) that hydrogen bond networks couple motions across long distances in interleukin-1beta, lead us to hypothesize that the hydration of the cavity (conserved across mammals) can thermodynamically enhance hydrogen bond networks to enable coupling across long distances by acting as a plug and this in turn enables a kinetic control of the rate of transmission of signals.
Ferroptosis is a regulated, non-apoptotic form of cell death, characterized by hydroxy-peroxidation of discrete phospholipid hydroperoxides, particularly hydroperoxyl (Hp)- forms of arachidonoyl- and adrenoyl-phosphatidylethanolamine, with a downstream cascade of oxidative damage to membrane lipids, proteins, and DNA, culminating in cell death. We recently showed that human trophoblasts are particularly sensitive to ferroptosis, caused by depletion or inhibition of glutathione peroxidase 4 (GPX4) or the lipase PLA2G6. Here, we show that trophoblastic ferroptosis is accompanied by a dramatic change in trophoblast plasma membrane, with macro-blebbing and vesiculation. Immunofluorescence revealed that ferroptotic cell-derived blebs stained positive for F-actin, but negative for cytoplasmic organelle markers. Transfer of conditioned medium that contained detached macrovesicles or co-culture with blebbing cells did not stimulate ferroptosis in target cells. Molecular modeling showed that the presence of Hp- phosphatidylethanolamine in the cell membrane promoted its stretchability. Together, our data establish that membrane macro-blebbing is characteristic of trophoblast ferroptosis and can serve as a useful marker of this process. Whether or not these blebs are physiologically functional remains to be established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.