Wireless sensor networks require energy-efficient data transmission because the sensor nodes have limited power. A cluster-based routing method is more energy-efficient than a flat routing method as it can only send specific data for user requirements and aggregate similar data by dividing a network into a local cluster. However, previous clustering algorithms have some problems in that the transmission radius of sensor nodes is not realistic and multi-hop based communication is not used both inside and outside local clusters. As energy consumption based on clustering is dependent on the number of clusters, we need to know how many clusters are best. Thus, we propose an optimal number of cluster-heads based on multi-hop routing in wireless sensor networks. We observe that a local cluster made by a cluster-head influences the energy consumption of sensor nodes. We determined an equation for the number of packets to send and relay, and calculated the energy consumption of sensor networks using it. Through the process of calculating the energy consumption, we can obtain the optimal number of cluster-heads in wireless sensor networks.
Big data analytics has addressed many in-place and remote network issues in a sub-aqueous distributed computing environment. Recently, a new phenomenon is introduced in the data analytics clusters that focus on multi-homing network connectivity procedures among off-ground multiple nodes of the large-scale on-running wireless industrial applications. In this way, the clusters perform multi-layer cross-connected task processing among various networks simultaneously and perform stream based data block placement over multiple nodes in a sequential order. This satisfies the procedural performance of the cluster; however, security remains an open issue in it because
In the pharmaceutical field, early detection of lung nodules is indispensable for increasing patient survival. We can enhance the quality of the medical images by intensifying the radiation dose. High radiation dose provokes cancer, which forces experts to use limited radiation. Using abrupt radiation generates noise in CT scans. We propose an optimal Convolutional Neural Network model in which Gaussian noise is removed for better classification and increased training accuracy. Experimental demonstration on the LUNA16 dataset of size 160 GB shows that our proposed method exhibit superior results. Classification accuracy, specificity, sensitivity, Precision, Recall, F1 measurement, and area under the ROC curve (AUC) of the model performance are taken as evaluation metrics. We conducted a performance comparison of our proposed model on numerous platforms, like Apache Spark, GPU, and CPU, to depreciate the training time without compromising the accuracy percentage. Our results show that Apache Spark, integrated with a deep learning framework, is suitable for parallel training computation with high accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.