In recent years, we have witnessed the dramatic increase in the volume of mobile SMS (Short Messaging Service) spam. The reason is that operators -owing to fierce market competition -have introduced packages that allow their customers to send unlimited SMS in less than $1 a month. It not only degrades the service of cellular operators but also compromises security and privacy of users. In this paper, we analyze SMS spam to identify novel features that distinguishes it from benign SMS (ham). The novelty of our approach is that we intercept the SMS at the access layer of a mobile phone -in hexadecimal format -and extract two features: (1) octet bigrams, and (2) frequency distribution of octets. Later, we provide these features to a number of evolutionary and non-evolutionary classifiers to identify the best classifier for our mobile spam filtering system. We evaluate the detection rate and false alarm rate of our system -using different classifiers -on a real world dataset. The results of our experiments show that sUpervised Classifier System (UCS), by operating on the the above-mentioned features' set, achieves more than 89% detection rate and 0% false alarm rate.
This study presents a shallow and robust road segmentation model. The computer-aided real-time applications, like driver assistance, require real-time and accurate processing. Current studies use Deep Convolutional Neural Networks (DCNN) for road segmentation. However, DCNN requires high computational power and lots of labeled data to learn abstract features for deeper layers. The deeper the layer is, the more abstract information it tends to learn. Moreover, the prediction time of the DCNN network is an important aspect of autonomous vehicles. To overcome these issues, a Multi-feature View-based Shallow Convolutional Neural Network (MVS-CNN) is proposed that utilizes the abstract features extracted from the explicitly derived representations of the input image. Gradient information of the input image is used as additional channels to enhance the learning process of the proposed deep learning architecture. The multi-feature views are fed to a fully-connected neural network to accurately segment the road regions. The testing accuracy demonstrates that the proposed MVS-CNN achieved an improvement of 2.7% as compared to baseline CNN consisting of only RGB inputs. Furthermore, the comparison of the proposed method with the popular semantic segmentation network (SegNet) has shown that the proposed scheme performs better while being more efficient during training and evaluation. Unlike traditional segmentation techniques, which are based on the encoder-decoder architecture, the proposed MVS-CNN consists of only the encoder network. The proposed MVS-CNN has been trained and validated with two well-known datasets: the KITTI Vision Benchmark and the Cityscapes dataset. The results have been compared with the state-ofthe-art deep learning architectures. The proposed MVS-CNN outperforms and shows supremacy in terms of model accuracy, processing time, and segmentation accuracy. Based on the experimental results, the proposed architecture can be considered as an efficient road segmentation architecture for autonomous vehicle systems.
The convergence of artificial intelligence (AI) is one of the critical technologies in the recent fourth industrial revolution. The AIoT (Artificial Intelligence Internet of Things) is expected to be a solution that aids rapid and secure data processing. While the success of AIoT demanded low-power neural network processors, most of the recent research has been focused on accelerator designs only for inference. The growing interest in self-supervised and semi-supervised learning now calls for processors offloading the training process in addition to the inference process. Incorporating training with high accuracy goals requires the use of floating-point operators. The higher precision floating-point arithmetic architectures in neural networks tend to consume a large area and energy. Consequently, an energy-efficient/compact accelerator is required. The proposed architecture incorporates training in 32 bits, 24 bits, 16 bits, and mixed precisions to find the optimal floating-point format for low power and smaller-sized edge device. The proposed accelerator engines have been verified on FPGA for both inference and training of the MNIST image dataset. The combination of 24-bit custom FP format with 16-bit Brain FP has achieved an accuracy of more than 93%. ASIC implementation of this optimized mixed-precision accelerator using TSMC 65nm reveals an active area of 1.036 × 1.036 mm2 and energy consumption of 4.445 µJ per training of one image. Compared with 32-bit architecture, the size and the energy are reduced by 4.7 and 3.91 times, respectively. Therefore, the CNN structure using floating-point numbers with an optimized data path will significantly contribute to developing the AIoT field that requires a small area, low energy, and high accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.