Tuberculosis (TB) is an infectious disease that can lead towards death if left untreated. TB detection involves extraction of complex TB manifestation features such as lung cavity, air space consolidation, endobronchial spread, and pleural effusions from chest x-rays (CXRs). Deep learning based approach named convolutional neural network (CNN) has the ability to learn complex features from CXR images. The main problem is that CNN does not consider uncertainty to classify CXRs using softmax layer. It lacks in presenting the true probability of CXRs by differentiating confusing cases during TB detection. This paper presents the solution for TB identification by using Bayesian-based convolutional neural network (B-CNN). It deals with the uncertain cases that have low discernibility among the TB and non-TB manifested CXRs. The proposed TB identification methodology based on B-CNN is evaluated on two TB benchmark datasets, i.e., Montgomery and Shenzhen. For training and testing of proposed scheme we have utilized Google Colab platform which provides NVidia Tesla K80 with 12 GB of VRAM, single core of 2.3 GHz Xeon Processor, 12 GB RAM and 320 GB of disk. B-CNN achieves 96.42% and 86.46% accuracy on both dataset, respectively as compared to the state-of-the-art machine learning and CNN approaches. Moreover, B-CNN validates its results by filtering the CXRs as confusion cases where the variance of B-CNN predicted outputs is more than a certain threshold. Results prove the supremacy of B-CNN for the identification of TB and non-TB sample CXRs as compared to counterparts in terms of accuracy, variance in the predicted probabilities and model uncertainty. INDEX TERMS Tuberculosis identification, computer-aided diagnostics, medical image analysis, Bayesian convolutional neural networks, model uncertainty.
Recognition of facial images is one of the most challenging research issues in surveillance systems due to different problems including varying pose, expression, illumination, and resolution. The robustness of recognition method strongly relies on the strength of extracted features and the ability to deal with low-quality face images. The proficiency to learn robust features from raw face images makes deep convolutional neural networks (DCNNs) attractive for face recognition. The DCNNs use softmax for quantifying model confidence of a class for an input face image to make a prediction. However, the softmax probabilities are not a true representation of model confidence and often misleading in feature space that may not be represented with available training examples. The primary goal of this paper is to improve the efficacy of face recognition systems by dealing with false positives through employing model uncertainty. Results of experimentations on open-source datasets show that 3-4% of accuracy is improved with model uncertainty over the DCNNs and conventional machine learning techniques.
The acquisition of the spatial and angular information of a scene using light field (LF) technologies supplement a wide range of post-processing applications, such as scene reconstruction, refocusing, virtual view synthesis, and so forth. The additional angular information possessed by LF data increases the size of the overall data captured while offering the same spatial resolution. The main contributor to the size of captured data (i.e., angular information) contains a high correlation that is exploited by state-of-the-art video encoders by treating the LF as a pseudo video sequence (PVS). The interpretation of LF as a single PVS restricts the encoding scheme to only utilize a single-dimensional angular correlation present in the LF data. In this paper, we present an LF compression framework that efficiently exploits the spatial and angular correlation using a multiview extension of high-efficiency video coding (MV-HEVC). The input LF views are converted into multiple PVSs and are organized hierarchically. The rate-allocation scheme takes into account the assigned organization of frames and distributes quality/bits among them accordingly. Subsequently, the reference picture selection scheme prioritizes the reference frames based on the assigned quality. The proposed compression scheme is evaluated by following the common test conditions set by JPEG Pleno. The proposed scheme performs 0.75 dB better compared to state-of-the-art compression schemes and 2.5 dB better compared to the x265-based JPEG Pleno anchor scheme. Moreover, an optimized motionsearch scheme is proposed in the framework that reduces the computational complexity (in terms of the sum of absolute difference [SAD] computations) of motion estimation by up to 87% with a negligible loss in visual quality (approximately 0.05 dB).INDEX TERMS Compression, light field, MV-HEVC, plenoptic.
Automated personal authentication has become increasingly important in modern information driven society and in this regard fingerprint-based personal identification is considered to be the most effective tool. In order to ensure reliable fingerprint identification and improve fingerprint ridge structure, a novel fingerprint enhancement approach is presented based on local adaptive contextual filtering. The proposed enhancement technique is 2-fold as it involves processing both in frequency and spatial domain. The fingerprint image is first filtered in frequency domain and then local directional filtering in spatial domain is applied to obtain enhanced fingerprint. In order to determine the performance efficiency of the proposed enhancement technique, a comparative analysis of error rates on standard fingerprint databases has been presented with major contextual enhancement schemes. The results show the efficacy of the proposed scheme as compared with other contextual filtering techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.