. 2015. The efficacy of anti-mycotoxin feed additives in preventing the adverse effects of wheat naturally contaminated with Fusarium mycotoxins on performance, intestinal barrier function and nutrient digestibility and retention in weanling pigs. Can. J. Anim. Sci. 95: 197Á209. This study was designed to determine the effect of feeding deoxynivalenol (DON) contaminated wheat to growing pigs on growth performance, digestibility and retention of nitrogen (N), phosphorus (P) and calcium (Ca). Secondly, we wished to evaluate the potential of four commercial anti-mycotoxin additives in preventing the adverse effects of DON. Sixty piglets (6.0 kg body weight) were assigned to six different corn-soybean meal-wheat diets (control diet: B0.5 mg kg(1 DON; contaminated diet (DONcontaminated): 4 mg kg (1 ; and four contaminated diets supplemented with a different anti-mycotoxin additive: DON' GLUC (glucomannan), DON'YBP (yeast, live bacteria, enzymes, plant extracts), DON'ALU (aluminosilicate) and DON'PC (preservation components). Piglets were housed individually in pens for 7 d and then transferred to metabolic crates for urine and feces collection for 7 d. At the end of these 2 wk, mannitol and lactulose doses were given by oral administration. Urine was collected for 24 h for an evaluation of barrier integrity of intestinal mucosa. The piglets were then euthanatized and intestinal samples collected for morphology studies. Feeding DON-contaminated wheat reduced average daily feed intake, average daily gain and G:F ratio compared with the control diet (PB0.05). Only DON'PC diet restored the growth performance of piglets fed DON-contaminated diet. Daily retention of N and P was not affected by DON contamination or anti-mycotoxin additives, but retention of Ca was higher in piglets fed the DON-contaminated diets than the control diet. DON-contaminated diet reduced digestibility of dry matter, gross energy and fat, villi height in jejunum, and recovery of mannitol and lactulose compared with the control diet (PB0.05). Finally, DON concentrations in serum from piglets fed the DON-contaminated diets were higher than in the control diet (PB0.05). Piglets fed DONcontaminated wheat had reduced growth possibly caused by impaired jejunal morphology and decreased digestibility of energy and fat.
Le Thanh, B. V., Lessard, M., Chorfi, Y. and Guay, F. 2015. Short Communication: Antioxidant capacity in the intestinal mucosa of weanling piglets fed diets containing Fusarium mycotoxins and the efficacy of commercial supplements sold as detoxifiers. Can. J. Anim. Sci. 95: 569–575. The ability of commercial feed additives to prevent oxidative damage due to deoxynivalenol (DON) in piglets was studied. Sixty piglets (6.0±0.5 kg) were assigned randomly to six wheat–corn–soybean diets: control (<0.5 mg kg−1 DON), DON-rich diet (4 mg kg−1 DON), and four DON-rich diets supplemented with either glucomannan (DON+GLUC), yeast, live bacteria, enzymes and plant extract (DON+YBP), aluminosilicate (DON+ALS), or a mixture of preservatives (DON+PV). Malondialdehyde concentration (MDA), glutathione peroxidase activity (GPx), catalase activity (CAT) and superoxide dismutase activity (SOD) in the small intestine were measured after 14 d. The DON-rich diet increased MDA in the jejunum while decreasing CAT in the jejunum and SOD in the ileum and increasing GPx in the ileum (P<0.05). The DON+GLUC diet decreased GPx and SOD (P<0.05) and tended to decrease MDA in the jejunum (P<0.10). The DON+YBP, DON+PV and DON+ALS diets all decreased CAT in the jejunum, while DON+YBP and DON+PV also did so in the ileum (P<0.05). DON+GLUC decreased SOD in the jejunum, while DON+YBP increased it (P<0.05). In the ileum, DON+PV decreased SOD, while DON+ALS increased GPx (P<0.05). No significant differences in total antioxidant capacity (TAC) in intestinal tissues were found. This study demonstrates that the mycotoxin DON and anti-mycotoxin additives modify oxidative status, including the antioxidant enzyme activities (CAT, SOD or GPx) in the intestinal mucosa of piglets. However, it was not possible to identify a specific antioxidant enzyme involved in counteracting the effect of DON.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.