Our results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks. Our models can be found at: https://github.com/vlawhern/arl-eegmodels.
Understanding the brain computations leading to object recognition requires quantitative characterization of the information represented in inferior temporal (IT) cortex. We used a biologically plausible, classifier-based readout technique to investigate the neural coding of selectivity and invariance at the IT population level. The activity of small neuronal populations (∼100 randomly selected cells) over very short time intervals (as small as 12.5 milliseconds) contained unexpectedly accurate and robust information about both object “identity” and “category.” This information generalized over a range of object positions and scales, even for novel objects. Coarse information about position and scale could also be read out from the same population.
Local field potentials (LFPs) arise largely from dendritic activity over large brain regions and thus provide a measure of the input to and local processing within an area. We characterized LFPs and their relationship to spikes (multi and single unit) in monkey inferior temporal cortex (IT). LFP responses in IT to complex objects showed strong selectivity at 44% of the sites and tolerance to retinal position and size. The LFP preferences were poorly predicted by the spike preferences at the same site but were better explained by averaging spikes within approximately 3 mm. A comparison of separate sites suggests that selectivity is similar on a scale of approximately 800 microm for spikes and approximately 5 mm for LFPs. These observations imply that inputs to IT neurons convey selectivity for complex shapes and that such input may have an underlying organization spanning several millimeters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.