The limited predictability and controlability of distributed energy resources has resulted in an increasing need for managing the available demand side flexibility from proactive endusers. In this regard, distribution system operators are expected to take a coordinating role in facilitating the utilization of the available flexibility. This paper proposes a novel optimization method to solve the optimal flexibility dispatch problem for a system operator such that it deploys the demand response resource effectively. We use the second-order cone relaxation of the problem to keep the problem convex, tractable and representing electric flows to a high accuracy. The analytical solution to the problem gives the locational pricing of flexibility services. To demonstrate the applicability and scalability of the proposed framework, it is applied to two case studies. We study a stylized 9-bus distribution network and a modified version of the IEEE 30-Bus System. Simulation results are interpreted in economic terms and show the effectiveness of the proposed approach.
Abstract-In this paper a high level functional architecture for frequency and voltage control for the future (2030+) power system is presented. The proposal suggests a decomposition of the present organization of power system operation into a "web of cells". Each cell in this web is managed by a single system operator who assumes responsibility for real-time balance and voltage control of the cell, minimizing the dependency on inter-cell communication for secure system operation. The web-of-cells architecture ensures overall system stability by a combination of decentralized and distributed control patterns for frequency and voltage control. In each control cell, the operator maintains an accurate view on the overall cell state, based on adequate monitoring capabilities, and ensures secure operation by allocating and dispatching reserves located in the cell. Intercell coordination provides for efficient system-wide management and economic optimization.
This paper describes a decentralized control scheme for reserves activations in the future (2030+) power system. The proposed Web-of-Cells concept has been developed within the European ELECTRA Integrated Research Programme on smart grids. The concept proposes a decentralized control scheme, focusing on local inter-cell tie-line power flow deviations. The Web-of-Cells concept, the different roles and the associated control scheme are described and discussed in detail in this paper including an outlook of validating its robustness and responsiveness.
The large-scale deployment of distributed generation including intermittent renewable energy sources introduces several challenges to power systems operation and planning. Although power systems often evolve in a fairly incremental way to meet these challenges, the ambitious objectives for RES development in the next decades (2030-2050), together with the deployment of storage options and active demand, indicate that a more essential paradigm change shift may be required. This paper presents the future challenges and the state of the art of research works that study new concepts for the power systems of the future, with a particular focus on the Web-of-Cells concept, multi-microgrids, the fractal grid approach and autonomic power systems.
The aim of this paper is to assess opportunities the Clean Energy Package provides for Plus Energy Buildings (PEBs) and Plus Energy Districts (PEDs) regarding their economic optimization and market integration, possibly leading to new use cases and revenue streams. At the same time, insights into regulatory limitations at the national level in transposing the set of EU Clean Energy Package provisions are shown. The paper illustrates that the concepts of PEBs and PEDs are in principle compatible with the EU energy community concepts, as they relate to technical characteristics while energy communities provide a legal and regulatory framework for the organization and governance of a community, at the same time providing new regulatory space for specific activities and market integration. To realize new use cases, innovative ICT approaches are needed for a range of actors actively involved in creating and operating energy communities as presented in the paper. The paper discusses a range of different options to realize PEBs and PEDs as energy communities based on the H2020 EXCESS project. It concludes, however, that currently the transposition of the Clean Energy Package by the EU Member States is incomplete and limiting and as a consequence, in the short term, the full potential of PEBs and PEDs cannot be exploited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.