Microgrids are subsystems of the distribution grid, which comprises generation capacities, storage devices, and controllable loads, operating as a single controllable system either connected or isolated from the utility grid. In this paper, we present a study on applying a model predictive control approach to the problem of efficiently optimizing microgrid operations while satisfying a time-varying request and operation constraints. The overall problem is formulated using mixed-integer linear programming (MILP), which can be solved in an efficient way by using commercial solvers without resorting to complex heuristics or decompositions techniques. Then, the MILP formulation leads to significant improvements in solution quality and computational burden. A case study of a microgrid is employed to assess the performance of the online optimization-based control strategy and the simulation results are discussed. The method is applied to an experimental microgrid located in Athens, Greece. The experimental results show the feasibility and the effectiveness of the proposed approach.
Microgrids are subsystems of the distribution grid which comprises generation capacities, storage devices and flexible loads, operating as a single controllable system either connected or isolated from the utility grid. In this work, microgrid management system is developed in a stochastic framework. It is seen as a constraint-based system that employs forecasts and stochastic techniques to manage microgrid operations. Uncertainties due to fluctuating demand and generation from renewable energy sources are taken into account and a two-stage stochastic programming approach is applied to efficiently optimize microgrid operations while satisfying a time-varying request and operation constraints. At the first stage, before the realizations of the random variables are known, a decision on the microgrid operations has to be made. At the second stage, after random variables outcomes become known, correction actions must be taken, which have a cost. The proposed approach aims at minimizing the expected cost of correction actions. Mathematically, the stochastic optimization problem is stated as a mixed-integer linear programming problem, which is solved in an efficient way by using commercial solvers. The stochastic problem is incorporated in a model predictive control (MPC) scheme to further compensate the uncertainty through the feedback mechanism. A case study of a microgrid is employed to assess the performance of the on-line optimization-based control strategy and the simulation results are discussed. The method is applied to an experimental microgrid: experimental results show the feasibility and the effectiveness of the proposed approach.
Smart grid systems are characterized by high complexity due to interactions between a traditional passive network and active power electronic components, coupled using communication links. Additionally, automation and information technology plays an important role in order to operate and optimize such cyber-physical energy systems with a high(er) penetration of fluctuating renewable generation and controllable loads. As a result of these developments the validation on the system level becomes much more important during the whole engineering and deployment process, today. In earlier development stages and for larger system configurations laboratory-based testing is not always an option. Due to recent developments, simulation-based approaches are now an appropriate tool to support the development, implementation, and rollout of smart grid solutions. This paper discusses the current state of simulation-based approaches and outlines the necessary future research and development directions in the domain of power and energy systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.