Liquid crystals used in electronic displays usually contain small amounts of ions that move under the influence of the varying applied electric field. It is well known that the motion of ions perpendicular to the substrates may lead to modified electric fields resulting in image sticking effects. During operation, the modulation in the director tilt angle can also lead to a net residual lateral component of the ion motion, parallel with the glass plates. A sustained ac driving voltage will accumulate the lateral ion motion and may result in image sticking effects near the pixel edge. Such effects have indeed been observed in supertwisted nematic cells.
A novel type of liquid crystal device is described, based on a four-electrode unit, arranged in a hexagonal array. Full three-dimensional simulations were performed using a finite elements algorithm demonstrating a 2π rotation of the director in the plane parallel to the substrate surface. Applications for the device are situated in the field of multistable wave plates, spatial light modulators and electrically controllable anchoring.
The ions present in liquid crystal devices modulate the applied electric field and lead to deterioration of the expected good optical response. In addition to the flicker and ghost images, a boundary image-retention effect is also possible. It occurs near the edges of a stressed pixel. We have attributed this effect to ions moving in the plane perpendicular to the applied electric field. This hypothesis has been proven using a combination of electrical and optical measurements. The observed optical non-homogeneity and its evolution with stress time were explained using the new model of lateral ion transport. The physical cause of this phenomenon is subject to further study.
Abstract-A liquid crystal device with micrometer-scale hexagonal electrodes has been fabricated and characterized. By using weak anchoring at the liquid crystal interfaces, the orientation of the director is completely governed by the applied electric fields. The appropriate voltage waveforms applied to electrodes allow the director in the liquid crystal layer to be rotated in the plane parallel to the substrates over large angles, exceeding 180• . This paper is a technological and experimental verification of an earlier proposed device concept.Index Terms-Liquid crystals, rotatable wave plate, weak anchoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.