The emission characteristics of top-emitting organic light-emitting devices ͑OLEDs͒ have been studied experimentally and theoretically to derive a quantitative understanding of the effect of a dielectric capping layer. We demonstrated that the angular intensity distribution and the spectral characteristics can be tuned and the light outcoupling enhanced simply by varying the optical thickness of a dielectric layer deposited on top of a semitransparent metal electrode. With the capping-layer concept, the outcoupled light intensity in forward direction was increased by a factor of 1.7, and concomitantly a high color purity achieved. An optical model based on a classical approach was used to calculate the emission characteristics. The excellent agreement between measured and simulated data shows that the capping layer controls the interplay between different interference effects such as wide-angle and multiple-beam interference occurring in top-emitting OLEDs. The strength of the capping layer concept is in particular that the optical and the electrical device performance can be optimized separately.
The Poisson-Nernst-Planck equations describe the dynamics of charge transport in an electric field. Although they are relevant in many applications, a general solution is not known and several aspects are not well understood. In many situations nonlinear effects arise for which no analytical description is available. In this work, we investigate charge transport in a planar device on application of a voltage step. We derive analytical expressions for the dynamical behavior in four extreme cases. In the "geometry limited" regime, applicable at high voltages and low charge contents, we neglect diffusion and the electric field induced by the charges. This leads to a uniform movement of all charges until the bulk is completely depleted. In the "space charge limited" regime, for high voltages and high charge contents, diffusion is still neglected but the electric field is almost completely screened over transient space charge layers. Eventually, however, the bulk becomes depleted of charges and the field becomes homogeneous again. This regime is solved under the assumption of a homogeneous current density, and is characterized by a typical t -3/4 behavior. In the "diffusion limited" regime, valid for low voltages and low charge contents, diffusion is the dominant transport mechanism and prevents the charges from separating. This results in only very small deviations from a homogeneous charge distribution throughout the device. In the "double layer limited" regime, for low voltages and high charge contents, the combination of dominant diffusion and screening of the electric field results in large variations occurring only in thin double layers near the electrodes. Numerical simulations confirm the validity of the derived analytical expressions for each of the four regimes, and allow us to investigate the parameter values for which they are applicable. We present transient current measurements on a nonpolar liquid with surfactant and compare them with the external current predicted by the theoretical description. The agreement of the analytical expressions with the experiments allows us to obtain values for a number of properties of the charges in the liquid, which are consistent with results in other works. The confirmation by simulations and measurements of the derived theoretical expressions gives confidence about their usefulness to understand various aspects of the Poisson-Nernst-Planck equations and the effects they represent in the dynamics of charge transport.
Silicon nitride (SiN) is emerging as a competitive platform for CMOS-compatible integrated photonics. However, active devices such as modulators are scarce and still lack in performance. Ideally, such a modulator should have a high bandwidth, good modulation efficiency, low loss, and cover a wide wavelength range. Here, we demonstrate the first electro-optic modulators based on ferroelectric lead zirconate titanate (PZT) films on SiN, in both the O-band and C-band. Bias-free operation, bandwidths beyond 33 GHz and data rates of 40 Gbps are shown, as well as low propagation losses (α ≈ 1 dB cm−1). A half-wave voltage-length product of 3.2 V cm is measured. Simulations indicate that further improvement is possible. This approach offers a much-anticipated route towards high-performance phase modulators on SiN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.