Green chemistry" refers to the promotion of safe, sustainable, and waste-minimizing chemical processes.The proliferation of green chemistry metrics without any clear consensus on industry standards is a significant barrier to the adoption of green chemistry within the pharmaceutical industry. We propose the Green Aspiration Level TM (GAL) concept as a novel process performance metric that quantifies the environmental impact of producing a specific pharmaceutical agent while taking into account the complexity of the ideal synthetic process for producing the target molecule. Application of the GAL metric will make possible for the first time an assessment of relative greenness of a process, in terms of waste, versus industry standards for the production process of any pharmaceutical. Our recommendations also include a simple methodology for defining process starting points, which is an important aspect of standardizing measurement to ensure that Relative Process Greenness (RPG) comparisons are meaningful. We demonstrate our methodology using Pfizer's Viagra TM process as an example, and outline aspiration level opportunities for industry and government to dismantle green chemistry barriers. † Electronic supplementary information (ESI) available: E factor preference and analysis details of Pfizer's Viagra TM commercial process. SeeThis journal is
Catalysis has become increasingly important for the pharmaceutical industry. Catalysis is a critical technology that enables economical and environmentally-sound manufacturing processes. The development of a viable catalytic process for industrial scales is a complex task that requires the collaboration of multiple disciplines. In this article, a number of selected, noteworthy industrial examples are discussed to showcase the catalytic technologies that have been successfully practiced on large scales for active pharmaceutical ingredient (API) synthesis, involving transition metal catalysis, biocatalysis and organocatalysis. In addition, several examples of potential and future catalytic transformations are included which can be utilized in pharmaceutical industry in large-scale operational settings.
Efficient asymmetric Suzuki-Miyaura coupling reactions are employed for the first time in total syntheses of chiral biaryl natural products korupensamine A and B in combination with an effective diastereoselective hydrogenation, allowing ultimately a concise and stereoselective synthesis of michellamine B. Chiral monophosphorus ligands L1-3 are effective for the syntheses of a series of functionalized chiral biaryls by asymmetric Suzuki-Miyaura coupling reactions in excellent yields and enantioselectivities (up to 99% ee). The presence of a polar-π interaction between the highly polarized BOP group and the extended π system of arylboronic acid coupling partner is believed to be important for the high enantioselectivity.
Conspectus Despite the rapid progress in the field of asymmetric catalysis, the search for new, efficient, and practical asymmetric catalytic transformations to facilitate the green synthesis of chiral natural products and drugs will continue to be a major ongoing effort in organic chemistry. Chiral phosphorus ligands have played a significant role in recent advances in transition-metal-catalyzed asymmetric transformations. However, there remain numerous challenging issues of reactivity and selectivity in catalysis. The development of new and efficient chiral phosphorus ligands with new structural motifs remains highly desirable. P-Chiral phosphorus ligands have been overlooked and are underdeveloped, except for the early success of DIPAMP, introduced first by Knowles in the early 1970s. It was not until the late 1990s that the development of P-chiral phosphorus ligands regained attention with the advent of bisP*, TangPhos, etc. Nonetheless, most P-chiral phosphorus ligands were either difficult to prepare or operationally inconvenient. The development of efficient, practical, and operationally convenient P-chiral phosphorus ligands with new structural motifs remains an important subject of research. This Account introduces the design and development of a series of practical and efficient P-chiral bis- and monophosphorus ligands based on a 2,3-dihydrobenzo[d][1,3]oxaphosphole motif. Their unique structural and physical properties include conformational unambiguousness, high tunability of electronic and steric properties, and operational simplicity as air-stable solids, which make them practical and exceptional ligands for asymmetric catalysis. Chiral bisphosphorus ligands such as MeO-BIBOP (L3), WingPhos (L4), and iPr-BABIBOP (L7) have demonstrated excellent enantioselectivities and unprecedented turnover numbers (TONs) in various asymmetric hydrogenations and other transformations, providing practical and efficient solutions leading to chiral amines, alcohols, carboxylic acids, and α- and β-amino acids. Chiral biaryl monophosphorus ligands, including BI-DIME (L9), AntPhos (L15), iPr–BI-DIME (L11), etc., have proven to be a class of versatile and powerful ligands for a number of catalytic asymmetric transformations, including asymmetric Suzuki–Miyaura coupling, asymmetric palladium-catalyzed dearomative cyclization, asymmetric hydroboration/diboration, asymmetric nickel-catalyzed reductive coupling, asymmetric palladium-catalyzed intramolecular arylation, asymmetric alkene aryloxyarylation, asymmetric α-arylation, asymmetric Heck reaction, and asymmetric nucleophilic addition, providing efficient solutions leading to various synthetically challenging chiral structures such as chiral biaryls, chiral tertiary alcohols, chiral α-amino tertiary boronic esters, and chiral all-carbon quaternary stereocenters. The high enantioselectivities and TONs obtained with these ligands have resulted in the syntheses of several chiral natural products and therapeutic agents in concise and highly efficient manners. While our eff...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.