Customer satisfaction in purchasing new products is an important issue that needs to be addressed in today's competitive markets. Consumers not only need to be solely satisfied with the functional requirements of a product, and they are also concerned with the affective needs and aesthetic appreciation of the product. A product with good affective design excites consumer emotional feelings so as to buy the product. However, affective design often involves complex and multi-dimensional problems for modelling and maximising affective satisfaction of customers. Machine learning is commonly used to model and maximise the affective satisfaction, since it is effective in modelling nonlinear patterns when numerical data relevant to the patterns is available. This article presents a survey of commonly used machine learning approaches for affective design when two data streams namely traditional survey data and modern big data are used. A classification of machine learning technologies is first provided which is developed using traditional survey data for affective design. The limitations and advantages of each machine learning technology are also discussed and we summarize the uses of machine learning technologies for affective design. This review article is useful for those who use machine learning technologies for affective design. The limitations of using traditional survey data are then discussed which is time consuming to collect and cannot fully cover all the affective domains for product development. Nowadays, big data related to affective design can be captured from social media. The prospects and challenges in using big data are discussed so as to enhance affective design, in which very limited research has so far been attempted. This article provides guidelines for researchers who are interested in exploring big data and machine learning technologies for affective design.
Affective design is an important aspect of new product development, especially for consumer products, to achieve a competitive edge in the marketplace. It can help companies develop new products that can better satisfy the emotional needs of customers. However, product designers usually encounter difficulties in determining the optimal settings of the design attributes for affective design. In this paper, a novel guided search genetic algorithm (GA) approach is proposed to determine the optimal design attribute settings for affective design. The optimisation model formulated based on the proposed approach applied constraints and guided search operators, which were formulated based on mined rules, to guide the GA search and to achieve desirable solutions. A case study on the affective design of mobile phones was conducted to illustrate the proposed approach and validate its effectiveness. Validation tests were conducted, and the results show that the guided search GA approach outperforms the GA approach without the guided search strategy in terms of GA convergence and computational time. In addition, the guided search optimization model is capable of improving GA to generate good solutions for affective design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.