AimsThe aim of this study was to evaluate seven methods for quantifying myocardial oedema [2 standard deviation (SD), 3 SD, 5 SD, full width at half maximum (FWHM), Otsu method, manual thresholding, and manual contouring] from T2-weighted short tau inversion recovery (T2w STIR) and also to reassess these same seven methods for quantifying acute infarct size following ST-segment myocardial infarction (STEMI). This study focuses on test–retest repeatability while assessing inter- and intraobserver variability. T2w STIR and late gadolinium enhancement (LGE) are the most widely used cardiovascular magnetic resonance (CMR) techniques to image oedema and infarction, respectively. However, no consensus exists on the best quantification method to be used to analyse these images. This has potential important implications in the research setting where both myocardial oedema and infarct size are increasingly used and measured as surrogate endpoints in clinical trials.Methods and resultsForty patients day 2 following acute reperfused STEMI were scanned for myocardial oedema and infarction (LGE). All patients had a second CMR scan on the same day >6 h apart from the first one. Images were analysed offline by two independent observers using the semi-automated software. Both oedema and LGE were quantified using seven techniques (2 SD, 3 SD, 5 SD, Otsu, FWHM, manual threshold, and manual contouring). Interobserver, intraobserver and test–retest agreement and variability for both infarct size and oedema quantification were assessed. Infarct size and myocardial quantification vary depending on the quantification method used. Overall, manual contouring provided the lowest inter-, intraobserver, and interscan variability for both infarct size and oedema quantification. The FWHM method for infarct size quantification and the Otsu method for myocardial oedema quantification are acceptable alternatives.ConclusionsThis study determines that, in acute myocardial infarction (MI), manual contouring has the lowest overall variability for quantification of both myocardial oedema and MI when analysed by experienced observers.
The aim of this document is to provide general guidance and specific recommendations on the practice of cardiovascular magnetic resonance (CMR) in the era of the COVID-19 pandemic. There are two major considerations. First, continued urgent and semi-urgent care for the patients who have no known active COVID-19 should be provided in a safe manner for both patients and staff. Second, when necessary, CMR on patients with confirmed or suspected active COVID-19 should focus on the specific clinical question with an emphasis on myocardial function and tissue characterization while optimizing patient and staff safety.
Background: The T 1 Mapping and Extracellular volume (ECV) Standardization (T1MES) program explored T 1 mapping quality assurance using a purpose-developed phantom with Food and Drug Administration (FDA) and Conformité Européenne (CE) regulatory clearance. We report T 1 measurement repeatability across centers describing sequence, magnet, and vendor performance. Methods: Phantoms batch-manufactured in August 2015 underwent 2 years of structural imaging, B 0 and B 1 , and "reference" slow T 1 testing. Temperature dependency was evaluated by the United States National Institute of Standards and Technology and by the German Physikalisch-Technische Bundesanstalt. Center-specific T 1 mapping repeatability (maximum one scan per week to minimum one per quarter year) was assessed over mean 358 (maximum 1161) days on 34 1.5 T and 22 3 T magnets using multiple T 1 mapping sequences. Image and temperature data were analyzed semi-automatically. Repeatability of serial T 1 was evaluated in terms of coefficient of variation (CoV), and linear mixed models were constructed to study the interplay of some of the known sources of T 1 variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.