The concentration of dissolved oxygen in aquatic systems helps regulate biodiveristy 1, 2 , nutrient biogeochemistry 3 , greenhouse gas emissions 4 , and drinking water quality 5 . The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity 6, 7 , but little is known about changes in dissolved oxygen concentrations in lakes. While dissolved oxygen solubility decreases with increasing water temperatures, long-term lake trajectories are not necessarily predictable. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification 8, 9 or they may increase as a result of enhanced primary production 10 . Here we analyse 45,148 dissolved oxygen and temperature profiles from 393 temperate lakes spanning 1941-2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although surface dissolved oxygen increased in a subset of highly-productive warming lakes, likely due to increasing phytoplankton production. In contrast, the decline in deep waters is associated with stronger thermal stratification and water clarity losses, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Freshwater dissolved oxygen losses are 2.5-10 times greater than observed in the world's oceans 6, 7 and could threaten essential lake ecosystem services 2,3,5,11 .
Highlights The General Lake Model (GLM) is stress tested against 32 globally distributed lakes. There was low correlation between input data uncertainty and model performance. Model performance related to lake-morphometry, light extinction and flow regime; deep, clear lakes with high residence times had the lowest model error.
Abstract. The factors affecting vertical distributions of chlorophyll fluorescence were examined in four temperate, warm monomictic lakes. Each of the lakes (max. depth > 80 m) were sampled over two years at intervals from monthly to seasonal. Profiles were taken of chlorophyll fluorescence (as a proxy for algal biomass), temperature and irradiance, as well as integrated samples from the surface mixed layer for chlorophyll a (chl a) and nutrient concentrations in each lake. Depth profiles of chlorophyll fluorescence were also made along transects of the longest axis of each lake. Chlorophyll fluorescence maxima occurred at depths closely correlated with euphotic depth (r 2 = 0.67, p < 0.01), which varied with nutrient status of the lakes.Whilst seasonal thermal density stratification is a prerequisite for the existence of a deep chlorophyll fluorescence maximum (DCM), our study provides evidence that the depth of light penetration largely dictates the DCM depth during stratification.Reduction in water clarity through eutrophication can cause a shift in phytoplankton distributions from a DCM in spring or summer to a surface chlorophyll maximum within the surface mixed layer when the depth of the euphotic zone (z eu ) is consistently shallower than the depth of the surface mixed layer (z SML ). Trophic status has a key role in determining vertical distributions of chlorophyll in the four lakes, but does not appear to disrupt the annual cycle of maximum chlorophyll in winter.
Transparency is a fundamental characteristic of aquatic ecosystems and is highly responsive to changes in climate and land use. The transparency of glacially-fed lakes may be a particularly sensitive sentinel characteristic of these changes. However, little is known about the relative contributions of glacial flour versus other factors affecting light attenuation in these lakes. We sampled 18 glacially-fed lakes in Chile, New Zealand, and the U.S. and Canadian Rocky Mountains to characterize how dissolved absorption, algal biomass (approximated by chlorophyll a), water, and glacial flour contributed to attenuation of ultraviolet radiation (UVR) and photosynthetically active radiation (PAR, 400-700 nm). Variation in attenuation across lakes was related to turbidity, which we used as a proxy for the concentration of glacial flour. Turbidity-specific diffuse attenuation coefficients increased with decreasing wavelength and distance from glaciers. Regional differences in turbidity-specific diffuse attenuation coefficients were observed in short UVR wavelengths (305 and 320 nm) but not at longer UVR wavelengths (380 nm) or PAR. Dissolved absorption coefficients, which are closely correlated with diffuse attenuation coefficients in most non-glacially-fed lakes, represented only about one quarter of diffuse attenuation coefficients in study lakes here, whereas glacial flour contributed about two thirds across UVR and PAR. Understanding the optical characteristics of substances that regulate light attenuation in glacially-fed lakes will help elucidate the signals that these systems provide of broader environmental changes and forecast the effects of climate change on these aquatic ecosystems.
Associations between the El Nino Southern Oscillation (ENSO) climate pattern and temporal variability in flow and 12 water quality variables were assessed at 77 river sites throughout New Zealand over a 13‐year period (1989 through 2001). Trends in water quality were determined for the same period. All 13 variables showed statistically significant linear regression relationships with values of the Southern Oscillation Index (SOI). The strongest relationships were for water temperature (mean R2= 0.20), dissolved reactive phosphorus (0.18), and oxidized nitrogen (0.17). The association with SOI varied by climate region. The observed patterns were generally consistent with known ENSO effects on New Zealand rainfall and air temperature. Trends in water quality variables for the periods 1989 through 1993, 1994 through 1998, and 1989 through 1998 were reasonably consistent with trends in SOI, even when the influence of river flow was removed from the data. This suggests that SOI effects on water quality are not necessarily a direct consequence of changes in flow associated with rainfall variation. In addition, both Baseline (32 upstream) and Impact (45 downstream) sites showed similar trends, indicating that changes in management were not directly responsible. We conclude that interpretation of long term water quality datasets in rivers requires that climate variability be fully acknowledged and dealt with explicitly in trend analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.