Field-scale biostimulation and desorption tracer experiments conducted in a uranium (U) contaminated, shallow alluvial aquifer have provided insight into the coupling of microbiology, biogeochemistry, and hydrogeology that control U mobility in the subsurface. Initial experiments successfully tested the concept that Fe-reducing bacteria such as Geobacter sp. could enzymatically reduce soluble U(VI) to insoluble U(IV) during in situ electron donor amendment (Anderson et al. 2003, Williams et al. 2011). In parallel, in situ desorption tracer tests using bicarbonate amendment demonstrated ratelimited U(VI) desorption (Fox et al. 2012). These results and prior laboratory studies underscored the importance of enzymatic U(VI)-reduction and suggested the ability to combine desorption and bioreduction of U(VI). Here we report the results of a new field experiment in which bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Results confirm that bicarbonate amendment to alluvial aquifer sediments desorbs U(VI) and increases the abundance of Ca-uranyl-carbonato complexes. At the same time, the rate of acetate-promoted enzymatic U(VI) reduction was greater in the presence of added bicarbonate in spite of the increased dominance of Ca-uranylcarbonato aqueous complexes. A model-simulated peak rate of U(VI) reduction was ~3.8 times higher during acetate-bicarbonate treatment than under acetate-only conditions. Lack of consistent differences in microbial community structure between acetatebicarbonate and acetate-only treatments suggest that a significantly higher rate of U(VI) reduction in the bicarbonate-impacted sediment may be due to a higher intrinsic rate of microbial reduction induced by elevated concentrations of the bicarbonate oxyanion. The findings indicate that bicarbonate amendment may be useful in improving the engineered bioremediation of uranium in aquifers. * Concentration/enrichment within the injection tank. ** Tank #2 injection was initially started on 9-Sept-10; however, a closed injection valve prevented flow from the tank; injection was restarted on 13-Sept-10, as indicated.
A well‐field within a uranium (U) plume in the groundwater‐surface water transition zone was monitored for a 3 year period for water table elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (Uaq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time series trends for Uaq and SpC were complex and displayed large temporal and well‐to‐well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common behaviors resulting from the intrusion dynamics of river water and the location of source terms. Hot‐spots in Uaq varied in location with increasing water table elevation through the combined effects of advection and source term location. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized Uaq was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While Uaq time‐series concentration trends varied significantly from year‐to‐year as a result of climate‐caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of river water intrusion.
The hyporheic zone (HZ) is the active ecotone between the surface stream and groundwater, where exchanges of nutrients and organic carbon have been shown to stimulate microbial activity and transformations of carbon and nitrogen. To examine the relationship between sediment texture, biogeochemistry, and biological activity in the Columbia River HZ, the grain size distributions for sediment samples were characterized to define geological facies, and the relationships among physical properties of the facies, physicochemical attributes of the local environment, and the structure and activity of associated microbial communities were examined. Mud and sand content and the presence of microbial heterotrophic and nitrifying communities partially explained the variability in many biogeochemical attributes such as C:N ratio and %TOC. Microbial community analysis revealed a high relative abundance of putative ammonia-oxidizing Thaumarchaeota and nitrite-oxidizing Nitrospirae. Network analysis showed negative relationships between sets of co-varying organisms and sand and mud contents, and positive relationships with total organic carbon. Our results indicate grain size distribution is a good predictor of biogeochemical properties, and that subsets of the overall microbial community respond to different sediment texture. Relationships between facies and hydrobiogeochemical properties enable facies-based conditional simulation/mapping of these properties to inform multiscale modeling of hyporheic exchange and biogeochemical processes.
A well‐characterized field site along a major, gravel bed river corridor was used to investigate the dynamic pathways and impacts of subsurface hydrogeologic structure on kilometer‐scale hydrologic exchange flows between river water and groundwater. An aqueous uranium (Uaq) plume exists within a hyporheic alluvial aquifer at the site that discharges to the Columbia River. We performed temporally intensive monitoring of specific conductance (SpC) and Uaq concentrations within the plume for a 2‐year period at varying distances from the river shoreline, both within and outside a presumed subsurface pathway of lateral hydrologic exchange. SpC and Uaq were utilized as in situ tracers of hydrologic exchange and associated groundwater‐surface water mixing. Seasonal river stage variations by more than 2 m caused distinct events of river water intrusion and retreat from the nearshore, hyporheic alluvial aquifer, resulting in highly dynamic SpC and Uaq patterns in monitoring wells. Simulations of hydrologic exchange and mixing were performed with PFLOTRAN to understand the observed SpC and Uaq behaviors linked to predominant flow directions and velocities in the river corridor as influenced by river stage dynamics and variable aquitard topography. By coupling robust monitoring with numerical flow and transport modeling, we demonstrate complicated multidirectional flow behaviors at the kilometer scale that strongly influenced plume dynamics. Therefore, hyporheic aquifer must be frequently monitored under different flow conditions if water quality is of concern. The resulting hydrologic understanding enables improved interpretation of hydrogeochemical data from this site and other large gravel bed river corridors in the United States and elsewhere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.