The rapid antidepressant action of a subanesthetic dose of ketamine in treatment-resistant patients represents the most striking recent breakthrough in the understanding of the antidepressant response. Evidence demonstrates tight interactions between the glutamatergic and monoaminergic systems. It is thus hypothesized that monoamine systems may play a role in the immediate/rapid effects of ketamine. In vivo electrophysiological recordings were carried in male rats following ketamine administration (10 and 25 mg/kg, i.p.) to first assess its effects on monoaminergic neuron firing. In a second series of experiments, the effects of ketamine administration on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)- and N-methyl-D-aspartate receptor (NMDA)-evoked responses in hippocampus CA3 pyramidal neurons were also investigated using micro-iontophoretic applications. Although acute (~2 hours) ketamine administration did not affect the mean firing activity of dorsal raphe serotonin and ventral tegmental area dopamine neurons, it did increase that of locus coeruleus norepinephrine neurons. In the latter brain region, while ketamine also enhanced bursting activity, it did increase population activity of dopamine neurons in the ventral tegmental area. These effects of ketamine were prevented by the prior administration of the AMPA receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide. An increase in AMPA-evoked response of CA3 pyramidal neurons was also observed 30 minutes following acute ketamine administration. The present findings suggest that acute ketamine administration produces a rapid enhancement of catecholaminergic neurons firing activity through an amplification of AMPA transmission. These effects may play a crucial role in the antidepressant effects of ketamine observed shortly following its infusion in depressed patients.
Serotonin (5-HT)3 receptors are the only ligand-gated ion channel of the 5-HT receptors family. They are present both in the peripheral and central nervous system and are localized in several areas involved in mood regulation (e.g., hippocampus or prefrontal cortex). Moreover, they are involved in regulation of neurotransmitter systems implicated in the pathophysiology of major depression (e.g., dopamine or GABA). Clinical and preclinical studies have suggested that 5-HT3 receptors may be a relevant target in the treatment of affective disorders. 5-HT3 receptor agonists seem to counteract the effects of antidepressants in non-clinical models, whereas 5-HT3 receptor antagonists, such as ondansetron, present antidepressant-like activities. In addition, several antidepressants, such as mirtazapine, also target 5-HT3 receptors. In this review, we will report major advances in the research of 5-HT3 receptor's roles in neuropsychiatric disorders, with special emphasis on mood and anxiety disorders.
Although deep brain stimulation (DBS) shows promising efficacy as a therapy for intractable depression, the neurobiological bases underlying its therapeutic action remain largely unknown. The present study was aimed at characterizing the effects of infralimbic prefrontal cortex (IL-PFC) DBS on several pre-clinical markers of the antidepressant-like response and at investigating putative non-neuronal mechanism underlying DBS action. We found that DBS induced an antidepressant-like response that was prevented by IL-PFC neuronal lesion and by adenosine A1 receptor antagonists including caffeine. Moreover, high frequency DBS induced a rapid increase of hippocampal mitosis and reversed the effects of stress on hippocampal synaptic metaplasticity. In addition, DBS increased spontaneous IL-PFC low-frequency oscillations and both raphe 5-HT firing activity and synaptogenesis. Unambiguously, a local glial lesion counteracted all these neurobiological effects of DBS. Further in vivo electrophysiological results revealed that this astrocytic modulation of DBS involved adenosine A1 receptors and K+ buffering system. Finally, a glial lesion within the site of stimulation failed to counteract the beneficial effects of low frequency (30 Hz) DBS. It is proposed that an unaltered neuronal–glial system constitutes a major prerequisite to optimize antidepressant DBS efficacy. It is also suggested that decreasing frequency could heighten antidepressant response of partial responders.
Brexpiprazole, a compound sharing structural molecular characteristics with aripiprazole, is currently under investigation for the treatment of schizophrenia and depression. Using electrophysiologic techniques, the present study assessed the in vivo action of brexpiprazole on serotonin (5-HT) receptor subtypes 5-HT 1A , 5-HT 1B , and 5-HT 2A ; dopamine (DA) D 2 autoreceptors, and a 1 -and a 2 -adrenergic receptors. In addition, the effects on 5-HT 1A autoreceptors in the dorsal raphe nucleus (DRN) and D 2 autoreceptors in the ventral tegmental area (VTA) were compared with those of aripiprazole, an agent in wide clinical use. In the DRN, brexpiprazole completely inhibited the firing of 5-HT neurons via 5-HT 1A agonism and was more potent than aripiprazole (ED 50 5 230 and 700 mg/kg, respectively). In the locus coeruleus, brexpiprazole reversed the inhibitory effect of the preferential 5-HT 2A receptor agonist DOI (2,5-dimethoxy-4-iodoamphetamine) on norepinephrine neuronal firing (ED 50 5 110 mg/kg), demonstrating 5-HT 2A antagonistic action. Brexpiprazole reversed the inhibitory effect of the DA agonist apomorphine on VTA DA neurons (ED 50 5 61 mg/kg), whereas it was ineffective when administered alone, indicating partial agonistic action on D 2 receptors. Compared with aripiprazole, which significantly inhibited the firing activity of VTA DA neurons, brexpiprazole displayed less efficacy at D 2 receptors. In the hippocampus, brexpiprazole acted as a full agonist at 5-HT 1A receptors on pyramidal neurons. Furthermore, it increased 5-HT release by terminal a 2 -adrenergic heteroceptor but not 5-HT 1B autoreceptor antagonism. In the lateral geniculate nucleus, brexpiprazole displayed a 1B -adrenoceptor antagonistic action. Taken together, these results provide insight into the in vivo action of brexpiprazole on monoamine targets relevant in the treatment of depression and schizophrenia.
Dingemanse, N. J., Oosterhof, C., Van Der Plas, F., Barber, I. (2009). Variation in stickleback head morphology associated with parasite infection. Biological Journal of the Linnean Society, 96, (4), 759-768. Sponsorship: Netherlands Organization for Scientific Research; Research Council of Norway IMPF: 02.04 RONO: 00Parasites can affect host phenotypes, influencing their ecology and evolution. Host morphological changes occurring post-infection might result from pathological by-products of infection, or represent adaptations of hosts or parasites. We investigated the morphology of three-spined sticklebacks, Gasterosteus aculeatus, from a population naturally infected with Schistocephalus solidus, which grows to large sizes in their body cavity. We examined local effects of infection on trunk shape, which are imposed directly by the bulk of the growing parasite, and distant effects on head morphology. We show that trunk shape differed between infection classes, and was affected more severely in fish with heavier total parasite mass. We further show unexpected differences in head morphology. The heads of infected fish were reduced in size and differently shaped to those of non-infected fish, with infected fish having deeper heads. Importantly, both head size and shape were also affected more severely in fish with heavier total parasite mass. This latter result suggests that differences in morphology are caused by post-infection changes. Such changes may be incidental, evolutionarily neutral 'side effects' of infection. However, because head morphology affects foraging ecology, such changes are likely to have fitness consequences for hosts, and may constitute adaptations, either of hosts or of parasites. We discuss our finding in the context of the evolution of phenotypic plasticity, and suggest testable hypotheses examining the proximate mechanisms underlying these morphological effects and their potential evolutionary basis.Peer reviewe
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.