In the course of 71 days in lunar orbit, from 19 February to 3 May 1994, the Clementine spacecraft acquired just under two million digital images of the moon at visible and infrared wavelengths. These data are enabling the global mapping of the rock types of the lunar crust and the first detailed investigation of the geology of the lunar polar regions and the lunar far side. In addition, laser-ranging measurements provided the first view of the global topographic figure of the moon. The topography of many ancient impact basins has been measured, and a global map of the thickness of the lunar crust has been derived from the topography and gravity.
Measurements of present‐day surface deformation are essential for the assessment of long‐term seismic hazard. The European Space Agency's Sentinel‐1 satellites enable global, high‐resolution observation of crustal motion from Interferometric Synthetic Aperture Radar (InSAR). We have developed automated InSAR processing systems that exploit the first ~5 years of Sentinel‐1 data to measure surface motions for the ~800,000‐km2 Anatolian region. Our new 3‐D velocity and strain rate fields illuminate deformation patterns dominated by westward motion of Anatolia relative to Eurasia, localized strain accumulation along the North and East Anatolian Faults, and rapid vertical signals associated with anthropogenic activities and to a lesser extent extension across the grabens of western Anatolia. We show that automatically processed Sentinel‐1 InSAR data can characterize details of the velocity and strain rate fields with high resolution and accuracy over large regions. These results are important for assessing the relationship between strain accumulation and release in earthquakes.
A variety of physical mechanisms are thought to be responsible for the triggering and spatiotemporal evolution of aftershocks. Here we analyze a vigorous aftershock sequence and postseismic geodetic strain that occurred in the Yuha Desert following the 2010 Mw 7.2 El Mayor‐Cucapah earthquake. About 155,000 detected aftershocks occurred in a network of orthogonal faults and exhibit features of two distinct mechanisms for aftershock triggering. The earliest aftershocks were likely driven by afterslip that spread away from the main shock with the logarithm of time. A later pulse of aftershocks swept again across the Yuha Desert with square root time dependence and swarm‐like behavior; together with local geological evidence for hydrothermalism, these features suggest that the events were driven by fluid diffusion. The observations illustrate how multiple driving mechanisms and the underlying fault structure jointly control the evolution of an aftershock sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.